Несколько самодостаточных фото, без комментариев 🙂
Октябрь 2024 г.Владивосток
Впервые об этой акустике я узнал из статьи Joe d’Appolito “THOR: D’Appolito Transmission Line” – АudioХpress 05/2002 (есть в разделе “Литература”). Название “Thor” очевидно появилось как комплимент норвежской компании Seas и корпус, разработанный D’Appolitо (весьма) отдаленно напоминал известный из Скандинавской мифологии “Молот Тора” (aka Мьёльнир).
Первый экземпляр Thor был собран мной в 2003 году и время от времени повторялся (с некоторыми модификациами) как часть комплекта стереосистемы для аудиоэнтузиастов.
Чем же интересна эта акустика?
Пожалуй, есть смысл более подробно остановиться на особенностях акустического оформления “Transmission Line”
Сразу отмечу, что это название слабо отражает “физическую суть” и пожалуй введено только для удобства классификации.
В самом общем смысле – это открытая труба, в один из концов которой вмонтирован динамик. Акустические опыты с трубой подробно рассмотрены например здесь.
В нашем конкретном случае длина “трубы” равна 1/4 от длины трубы, в которой возникает основной резонанс акустической волны с частотой колебаний fp. Выбор fp, на основании которого проводятся все дальнейшие расчеты, определяется параметрами НЧ динамика – fs, Qts, Vas.
Помимо основного резонанса на частоте fp, в трубе возникают и дополнительные резонанcы на частотах 2fр, 3fp, 4fр, 5fр и т.п. Можно заметить, что эти резонансы как консонансны (2fp, 4fp), так и диссонансны (3fp, 5fp). Консонансные резонансы, если их амплитуды находятся в “правильных” соотношениях скорее полезны и благозвучны, а от диссонансных резонансов нужно избавляться. Резонансы с частотами выше 5fp незначительны по амплитуде и практического интереса не представляют.
Для подавления диссонансных резонансов применяют известное конструкторское решение – динамик (или один из динамиков, если их два) смещают на некоторое расстояние относительно закрытого конца “трубы” таким образом, чтобы резонансы, возникающие в этом закрытом отрезке, ослабляли основные диссонансные резонансы. А для общего ослабления и “сглаживания” пиков всех резонансов “трубу” заполняют демпфирующим материалом определенной плотности. Варьируя плотность заполнения на разных участках “трубы”, добиваются “правильного” соотношения консонансных резонансов. Для уменьшения габаритов акустических систем “трубу” складывают в два отрезка, такое решение позволяет дополнительно снизить уровень высоких частот, излучаемых в окружающее пространство из ее открытого конца.
Таким образом, “труба” существенно дополняет излучение динамиков только в НЧ области (примерно до 200…300 Hz). Подробности расчета габаритов и некоторые особенности заполнения “трубы” рассмотрены в оригинальной статье и для “продвинутого” аудиоэнтузиаста их понимание не представляет особой сложности.
Но (на мой взгляд) некоторые моменты требуют дополнительных пояснений
Во-первых, возникает вопрос – что, собственно, считать “правильной” (гладкой) АЧХ в области НЧ. Принято считать “правильным”, что если в случае размещения акустической системы в безэховой камере измеренная итоговая добротность акустического оформления Qtc= равна 0.707, то АЧХ акустической системы максимально гладкая, без подъема в области НЧ. В оригинальной статье рекомендовано добиваться итоговой добротности оформления Qtc = 0.55 что, по моему мению, говорит о черезмерном демпфировании.
Реальное жилое помещение совсем не похоже на безэховую камеру и практически всегда требует хотя бы простейшей акустической обработки. Без акустической обработки подбор хорошо звучащей акустики превращается в многолетний “квест”, положительный итог которого возможен только в случае редкого совпадения (или, скорее не-совпадения) резонансов комнаты и уровней отражения-поглощения стен и потолка в области СЧ и ВЧ с АЧХ и диаграммой направленности излучения акустических систем 🙂
Поэтому – как минимум – в комнате для прослушивания необходимо избавиться от “лишней” мебели, должны быть хорошие, изолирующие от “звука улиц” окна и двери, при необходимости – можно установить в углы басовые ловушки, а в местах отражений звука закрепить на стены звукопоглощающие панели. Для такого помещения размеров обычной жилой комнаты итоговая добротность акустического оформления, на мой взгляд и слух, должна быть около 0.8…1.0 – в этом случае как классика, так и рок и поп музыка будут звучать наполненно, “телесно”, основательно.
Во-вторых, некоторые вопросы возникают к критерию точности следования исходным размерам при пересчете чертежа АС из статьи из дюймовых размеров в метрические. На практике, разброс параметров НЧ динамиков уже изначально задает некоторую “вариативность” вычислений, а процесс заполнения “трубы” демпферным материалом довольно творческий 🙂 и позволяет получить искомый результат в случае некритичных отклонений в размерах. Основываясь на усредненных результатах измерений ~24 шт динамиков Seas, изготовленных в период с 2002 по 2020 годы и принимая во внимание удобство практического изготовления копусов в обычной мастерской, я выполнил перерасчет оформления и составил уточненный чертеж корпусов АС.
В-третьх, фильтр АС имеет некоторые неочевидные особенности.
На практике С1 = С2 = 8…8.2uF, R3=12…12.5Ом, L3 = 0.24…0.25mH, желательно, чтобы сопротивление постоянному току L3 не было слишком уж низким.
На первый взгляд, фильтр НЧ – первого порядка (L1), дополненный фильтром-пробкой L2C1R1. Фильтр-пробка необходим для “успокоения” пика на АЧХ НЧ динамиков в районе 4.4…4.5 kHz. R1 + сопротивление L2 постоянному току задают уровень (“глубину”) подавления.
На практике, влияние фильтра-пробки начинается уже выше 1 kHz и поэтому на расчетной частоте раздела 2,5 кHz НЧ фильтр фактически является фильтром второго-третьего порядка.
По ВЧ фильтру обычно возникает вопрос насчет “черезмерной” (относительно расчетной) емкости конденсатора С3 (18uF). Если С3 заменить перемычкой, то АЧХ и ФЧХ ВЧ фильтра будут выглядеть так –
А с конденсатором С3 – так (обратите внимание на фазу) –
На мой слух – такой вариант фильтра при конфигурации расположения динамиков MTM дает более равномерную диаграмму направленности излучения ВЧ динамика по вертикали. Конденсатор С4 (2.2uF) несколько выравнивает итоговый импеданс ВЧ динамика, что, в свою очередь дает более равномерный ход АЧХ в области 5..7 kHz. Если эту область желательно немного “пригасить”, то С4 можно заменить “проволочкой”, из-за изменения импеданса нагрузки частота раздела ВЧ фильтра будет немного выше 🙂
Возможно ли применение последовательного фильтра в акустике Thor ?
В общем и целом – да, (успешные) опыты в этом направлении ведутся. ВЧ динамик плохо переносит большую подводимую мощность, поэтому такой фильтр подойдет в случае совместной работы с усилителем небольшой мощности (~ <10W на канал)
Несколько фото, сделанных в процессе сборки-отладки
Сентябрь-Октябрь 2024 г.Владивосток
Здравствуйте, Виктор!
Выражаю Вам свою благодарность за статью, поскольку она помогла мне раскрыть потенциал Pioneer CS-100, утраченный с течением времени.
Доработки начал с одной колонки и после каждого этапа (замена конденсаторов, оклейка корпуса изнутри вибромастикой Шумоff 4mm, добавление на стенки матов из синтепона – подключал и сравнивал с недоработанной, чтобы явно услышать разницу по каждой из позиций. Конденсаторы вернули звук, Шумоff убрал вибрацию стенок (несмотря на толщину 3см они и звенят и вибрируют), маты из синтепона добавили “комфорта” в звуке 🙂 Теперь звучание более ясное, а НЧ более четкие. СЧ боксы изнутри тоже оклеил Шумоff 2mm и заменил “винтажную” синтевату на синтепон, в края стаканов вставил резиновый уплотнитель. Неожиданно разочаровала передняя стенка, она тоньше боковых и звенит и вибрирует прилично. Пришлось приклеить “плюшку” Шумоff в районе СЧ головок (это самое звонкое место).
Еще раз Спасибо.
С Уважением, Николай, г. Великий Новгород
P.S. Немного позже я могу подробней описать мои действия, поскольку остались еще полезные моменты, которые, возможно будут кому-то интересны и добавлю фото.
Несколько фото, снятых в процессе доработки акустики –
Май 2024 г.Владивосток
В этой акустической системе я решил реализовать принцип “вариативности”, то есть возможность подстройки акустического оформления под свойства помещения и музыкальные вкусы владельца. Ранее я уже пробовал эту идею в наборе “Правильный Комплект” (см.статью от 08.08.2017), но в этот раз я пошел гораздо дальше 🙂 Этот “Правильный Комплект” собран на 12″ НЧ динамике Eton Orchestra и на 7″ коаксиальном динамике Tannoy (OEM).
Базовый вариант оформления – закрытый ящик. Для более оптимальной привязки акустики к особенностям помещения на задней стенке каждой АС сделано два отверстия, в базовом варианте закрытых заглушками. В отверстия может быть установлена ПАС (“Flow Resistor” от Scan-Speak) и (или) порт ФИ.
Размещение акустики и акустическое оформление
Рекомендации для размещения акустики в помещении для прослушивания – традиционны – не менее 1м от стен, 1.5…2.5 м между АС и 2…3.5м до слушателя с разворотом АС в сторону слушателя. Более точное расположение АС (угол разворота и расстояние от стен) постепенно подстраивается в ходе прослушивания, по наиболее четкому и ясному воспроизведению НЧ и СЧ. Предполагается, что помещение более-менее акустически подготовлено для прослушивания.
К комплекту акустических систем прилагаются порты ФИ (2шт с крепежными винтами) и 2 шт круглых ПАС “Flow Resistor” Scan-Speak.
Основное акустическое оформление – Закрытый Корпус (“Закрытый Ящик” – ЗЯ). Это акустическое оформление отличается четким, ясным и “быстрым” воспроизведением НЧ. Недостатками ЗЯ являются относительно ранний спад АЧХ в области НЧ, что в большинстве случаев компенсируется свойствами помещения. При этом нужно отметить, что спад отдачи на НЧ для ЗЯ – практически равномерный и в итоге – полоса в области НЧ получается более широкой по сравнению с другими видами оформлений. На мой взгляд (и слух) это акустическое оформление наиболее оптимально и “универсально” для НЧ динамиков, примененых в этих АС и лучше всего подходит для длительного прослушивания.
Если же через некоторое время все-таки вдруг покажется, что НЧ должны быть более “фундаментальны” 🙂 , то акустическое оформление можно модифицировать до Корпуса с Фазоинвертором (ФИ) и (или) Корпуса с ПАС (Flow Resistor Box).
Оформление ФИ характеризуется тем, что спад АЧХ в области НЧ начинается на более низкой частоте, чем у ЗЯ, но при этом ниже этой частоты спад более резкий, чем у ЗЯ. В итоге отдача в области НЧ получается более “выраженной”, но не такой “быстрой”, как у ЗЯ.
Для установки порта ФИ необходимо снять нижние заглушки (желательно их сразу пометить – левая и правая, верхняя сторона заглушки и нижняя сторона). Скорее всего, после установки портов потребуется некоторая коррекция оптимальной установки акустики в комнате.
Оформление ПАС в данной реализации – это нечто среднее между ЗЯ и ФИ, фактически это ФИ со сниженной эффективностью порта. Оно может быть интересно, если в ходе прослушивания захочется получить “эффектность” подачи НЧ немного ниже, чем у ФИ.
Для оценки изменений в звучания в отверстия портов можно временно установить ПАС Scan-Speak. Если подача и уровень НЧ в этом варианте устроит, то нужно снять верхние заглушки и установить ПАС в открывшиеся отверстия. При этом порты ФИ нужно снять и установить нижние заглушки на место.
Как один из возможных вариантов – я не исключаю конфигурации АС с установленными в верхние отверстия ПАС вместе с портами ФИ, установленными в нижние отверстия.
Немного измерений
График зависимости импеданса и электрической фазы акустики от частоты, вариант оформления “закрытый ящик”, правый и левый каналы:
График зависимости импеданса фильтров акустики от частоты + фильтры без нагрузки:
Графики зависимости импеданса динамиков акустики от частоты:
Как видно из графиков, в акустике установлены динамические головки с различающимися импедансами, это обусловлено в том числе и современными реалиями доступности компонентов. Для успешной “связки” динамиков с различающимися импедансами в одной АС логично применить фильтр последовательного типа, что я и сделал.
Моделирование АЧХ и фильтра.
Реальная АЧХ акустики (левый + правый каналы), снятая в месте прослушивания в типичном акустически подготовленном помещении “квартирного” типа, сглаживание 1/6 октавы.
Немного о конструкции корпусов
Корпуса сделаны из МДФ толщиной 22 мм, передняя панель – толщиной 32 мм. Вес одного корпуса – около 25 кГ. Там, где это требуется, внутренние поверхности стенок покрыты Шумоff, все поверхности закрыты синтепоном, углы и часть внутреннего объема в требуемой степени заполнены синтепухом. Синтепух надежно закреплен на (своем) месте при помощи специализированного клея.
Несколько Фото
PS И да – это, пожалуй был мой последний проект “большой тяжелой напольной акустики”. Перехожу к искусству малых форм. 🙂
Март 2024 г.Владивосток
Кажется очевидным то, что аудиофилы-самодельщики понимают, что без хороших акустических систем (АС) им не обойтись. Тем более удивительно, что до сих пор взгляды большинства из них на критерии качества АС существенно различаются. И более того – до сих пор не ясно, какие методы проектирования АС приводят к гарантировано хорошим результатам.
“Теория относительности” АЧХ
Даже небольшого опыта прослушивания достаточно, чтобы заметить разницу между воспроизведением одной и той же музыки разными АС. При этом, если верить данным производителей, основной параметр – амплитудно-частотные характеристики (АЧХ) этих разных АС почти всегда близки к идеалу и очень похожи.
Поэтому многие самодельщики приходят к тому выводу, что проблема “ровной” АЧХ уже практически решена, а качество воспроизведения зависит только от конструкции и материалов динамиков, корпусов и разделительных фильтров.
Но действительно ли все в порядке с АЧХ? Независимые измерения не подтверждают оптимистических параметров, заявленных производителями. Каждая модель АС имеет реально свою “кривую” АЧХ, разительно отличающуюся от “аналогично- кривых” характеристик других АС и мой скромный опыт показывает, что это характерно для всех ценовых групп. Разница в звучании при воспроизведении одной и той же музыки разными АС – очевидна. Но при этом АЧХ от “производителей” всегда одинаково-ровные. 🙂
Удивительно, но эти “одинаково-ровные” АЧХ – в общем-то правдивы. Для рекламных проспектов измерения обычно производятся по методикам, обеспечивающим “правильный” вид характеристик. Например, можно провести измерения при повышенной скорости сканирования рабочего диапазона частот что усреднит и сгладит пики и провалы АЧХ в процессе снятия характеристик.
Но гораздо интереснее другое – почему же одна “кривая” (по АЧХ) модель АС звучит хорошо, а другая вроде как более “ровная” – воспроизводит музыку гораздо хуже?
Получается, что даже независимые,”честные” 🙂 измерения хоть и позволяют представить реальную АЧХ акустики в реальной комнате, но не раскрывают ее связь с конкретными особенностями звучания.
Почему, обладая всем необходимым, разработчики не создают идеальных АС? Ведь по идее – “идеал”, эталон – только один! И вроде как очевидно, что все АС, близкие к эталону, должны звучать примерно одинаково (хорошо).
Некоторые проблемы метрологии и их влияние на конечный результат.
Я считаю, что основная проблема в том, что любой способ проведения измерений неизбежно дает целый комплекс разнообразных ошибок. Самые “вредные” ошибки – методические, то есть связанные с несовершенством самого метода измерений.
Существует ряд общепринятых методик измерения АЧХ. Одна из основных – настройка АС в заглушенной, безэховой камере.
При проведении таких измерений принципиально важны методические особенности. Например – где располагать микрофон относительно АС. Обычная рекомендация – на “акустической оси”, на расстоянии 1 метр от акустической системы. А где точно проходит эта “ось” в случае трехполосной АС? Вряд ли перед ВЧ динамиком. Тогда, видимо, правильнее разместить микрофон на “оси” СЧ динамика. А если сместить микрофон немного выше или ниже, то для одной и той же АС получим множество различных АЧХ. На какую из них ориентироваться? Почему-то в этом методе проведения измерений принято считать, что слушатель обязательно услышит “измеренную” АЧХ, то есть поместит ухо именно туда, где при измерении располагался микрофон 🙂
Но ведь – в обычном помещении на НЧ и “нижних” СЧ АС активно взаимодействуют с полом и потолком, влияние которых в безэховой камере отсутствует. Взаимодействие АС с помещением влияет на звучание принципиально – но его конкретные проявления настолько разнообразны, что даже не могут быть представлены посредством точной математической модели.
Более того, суммарная АЧХ стереопары существенно отличается от АЧХ одной АС, а общепринятые методики настройки АС не учитывают этого обстоятельства. Например – при стереовоспроизведении голоса вокалистов обычно локализуются в центре звуковой сцены, то есть воспроизводятся обеими АС стереопары. Я считаю очевидным и методически верным то, что даже для настройки уровня и тем более для получения разборчивой и “ровной” передачи голосового диапазона необходимо контролировать итоговую АЧХ обеих АС.
Есть и другие, вроде бы логичные и методически адекватные методы – например настройка АЧХ и ФЧХ по импульсным сигналам. Но и при этом – работая казалось бы по одинаковым алгоритмам, специалисты почему-то получают разные звуковые результаты.
Даже учитывая только эти “нестыковки” можно сделать вполне уверенные выводы:
Примечание по поводу румкоррекции
Действительно высококачественное звуковоспроизведение в произвольном акустически неподготовленном помещении требует или подготовки помещения – то есть коррекции архитектурных особенностей и проведения акустической обработки соответствующими материалами и (или) обязательного наличия в составе звуковоспроизводящей аппаратуры некоторого модуля аппаратно-программной интерактивной румкоррекции. На всякий случай уточню – именно интерактивной румкоррекции.
Сейчас широко применяется адаптивная румкоррекция – то есть звуковоспроизводящая система оснащается небольшим измерительным комплексом, который обычно состоит из микрофона и сигнального процессора. На этапе калибровки системы микрофон размещается на месте слушателя и (иногда) поочередно в различных местах комнаты, сигнальный процессор генерирует некие сложные сигналы и фиксирует “отклик” от микрофона. Таким образом присходит создание матрицы данных для необходимой коррекции АЧХ и ФЧХ системы в заданных частотных и амплитудных диапазонах и воспроизведение происходит с учетом калибровочных данных. При изменении акустической обстановки в комнате необходимо проведение перекалибровки.
Интерактивная румкоррекция предполагает постоянную подстройку системы под имеющиеся акустические условия. В идеале – изменение акустических условий в помещении не должно быть заметно для слушателя. Проще говоря, если в процессе прослушивания музыки в комнату кто-то занес например шкаф или вынес из нее кресло – то слушатель может заметить изменение обстановки, но не должен заметить изменений в звучании системы 🙂
Октябрь 2022 г.Владивосток
Уже довольно долго во Владивостоке живет Виталий – увлеченный творческий энтузиаст-аудиофил, с “правильными” руками и трезвым рассудком.
Виталий имеет богатый опыт в изготовлении кабелей, сборке и ремонте МС трансформаторов, проигрывателей винила, “рекаппинге” (recapping) усилителей мощности и предусилителей.
Весной этого года он поставил цель – провести разумный и эффективный upgrade и (может быть) некоторую доработку имеющейся в его системе акустики KEF Reference Modеl Four, выпуска 90-х годов прошлого века.
Из очевидно слышимых причин уже назревшей необходимости upgrade – ощутимый недостаток ВЧ и гулкость, расплывчатость звучания на НЧ. При этом звучание системы в целом – объемное, ровное, увлекающее. Помещение для прослушивания акустически обработано верно.
Сдерживающие факторы – небольшой опыт в подобной работе с АС, отсутствие требуемой измерительной аппаратуры и навыков проведения измерений, необходимых в процессе отладки.
Решение – пригласить меня в качестве консультанта и метролога 🙂
Акустика KEF Reference Mоdel Four устроена довольно оригинально. Вот здесь можно почитать о ней более подробно. На первый взгляд – внешний вид вполне традиционно – обычен:
А вот внутренее устройство – весьма не тривиально:
Как видно – то, что снаружи выглядит как порт фазоинвертора – таковым не является, НЧ динамики расположены во внутреннем объеме в комбинированном оформлении – ЗЯ, bandpass и ФИ одновременно 🙂
Фото и схема “старых” разделительных фильтров
Видно, что фильтры довольно многополосны и весьма “ветвисты” 🙂 , что отчасти объясняется особенностями акустического оформления. Я не увидел необходимости в коррекции частотного диапазона полос фильтров, пересчете номиналов элементов и последующей “пересшивке” полос. Тут разработчики потрудились весьма искусно и вмешиваться в результат их труда нет никакого смысла.
Было принято решение ограничиться (всего лишь) следующим –
Что и было сделано Виталием 🙂
Собраны новые фильтры, для них изготовлены и закреплены на задних стенках внешние короба, заменена вся внутреняя проводка
Сделана механическая и акустическая доработка корпусов, корзины динамиков оклеены акустическим войлоком. Вырезы для крепления клеммных колодок на задних стенках корпусов были аккуратно закрыты фанерными вставками, внутренние поверхности корпусов задемфированы Шумоff, герметиком и акустическим войлоком. Свободный объем коробов, в которые установлены “новые” фильтры – заполнен демпферным материалом. Установлены новые высококачественные медные клеммы-терминалы.
Доработка в высшей степени благотворно сказалась на звучании акустики. Края дипазона слышимо расширились и особенно это стало заметно в ВЧ диапазоне. СубНЧ и НЧ “подсобрались”, стали более динамичными, четкими и разнообразно-детальными. СЧ область, голосовой диапазон стал более объемен, выразителен и “многослоен”. ВЧ – как бы “заново проявились”, их уровень стал ровно таким, сколько нужно – не больше и не меньше. Доработка полностью оправдала себя, акустика и система в целом вышли на принципиально более высокий уровень.
Зависимость импеданса акустики от частоты.
АЧХ акустики, снятая в ближнем поле в реальной комнате для прослушивания.
Июнь…Сентябрь 2022 г. Владивосток
От прошлых опытов у меня осталась пара ШП динамиков Тang Band W8-2145. Это одни из немногих широкополосников, которые играют ровно, спокойно, без очевидно-явного назойливого выделения СЧ и особенно верхней СЧ областей. Некоторая неравномерность конечно присутствует, но в общем и целом на мой слух – все довольно терпимо по сравнению с аналогичными ШП динамиками.
В начале лета я удачно заказал в дружественной мастерской пару небольших полочных корпусов. Корпуса приехали в августе и я поставил их в комнате на заметное место – для того, чтобы иногда натыкаться на них (взглядом) и напоминать себе, что с ними пора уже что-то сделать. 🙂
Август этого года во Владивостоке выдался на удивление дождливый и “тепло-удушливый”. Влажность 100% и температура воздуха под 29 градусов – то еще сочетание – из прохладного помещения с кондиционером на улицу выходить совсем не хочется. “Световой день” при такой погоде выглядит очень странно – жарко, мокро и пасмурно, солнца мало. Настроение в эти “летние деньки” – довольно депрессивное. Охлажденный сухой германский рислинг конечно помогает, но не надолго. В общем – “… Туман, сэр. (с) 🙂 …”
Итак, в очередной раз наткнувшись в душных сумерках на пару пустых корпусов, притаившихся в углу комнаты – я решил что уже точно пора что-то с ними сделать. И вообще – мне не нравится, когда корпуса пылятся в углу, а динамики лежат без дела в шкафу. Хорошо, что все предварительные расчеты были сделаны до заказа корпусов 🙂 , а Шумоff и синтепон оказались в наличии – поэтому обработка внутренней поверхности и настройка фазоинверторов не заняли у меня много времени. В итоге – через несколько дней я уже слушал симпатичную пару хороших широкополосных полочников.
Основные технические характеристики динамиков Tang Band W8-2145:
В целом звучание – спокойное (не яркое и не сибилятивное), субъективно ровное с некоторым акцентом в голосовой области и сглаженной подачей ВЧ. Корректирующего фильтра нет, но при необходимости расширить стилевые предпочтения его можно установить, чувствительность после этого немного уменьшится. Такая акустика – находка для любителей классики, старого джаза, вокала и будет хорошим компаньоном для небольшого усилителя на лампах, например с выходным каскадом на пентоде.
Несколько фото. Качество фото – весьма посредственное, но это объяснимо. Духота, сумерки и туман. 🙂
P.S. Вторая пара клемм предназначена для (возможного) подключения супертвиттера.
Август 2022 г.Владивосток
Акустика была анонсирована в октябре 2021 года. Здесь и сейчас – более подробный рассказ и (уже осознанные) 🙂 впечатления.
Итак, на начало 2021 года практически вся моя личная акустика, включая замечательные полочники на 8″ Eminence и 6.5″ ШП Tang Band уехали к новым счастливым владельцам. В итоге я остался один на один с вот таким набором динамиков: 12″ Woofer Eton Orchestra, 8″ Full Range Tang Band 2145 и парой ленточных твиттеров NeoX 2.0 от Fountek. Большие “тестово-отладочные” корпуса тоже остались у меня. (Как оказалось – ненадолго). Я довольно быстро собрал трехполосную акустику с “широкой” серединой и неторопливо проводил опыты с разделительными фильтрами, внимательно отслушивая разные варианты, а примерно в октябре 2021 года мой набор динамиков переселился в новые, специально изготовленные для них корпуса. Эти корпуса изначально разрабатывались так, чтобы можно было легко и (сравнительно) быстро изменить оформление НЧ звена между ЗЯ, ФИ и ПАС. В качестве ПАС я в очередной раз применил “знаменитый” Flow Resistor от ScanSpeak. Такой же Flow Resistor я применил и в оформлении СЧ звена.
В процессе “переселения динамиков” неожиданно открылась “страшная тайна” ленточных твиттеров Fountеk – а именно то, что они примерно через месяц интесивной эксплуатации заметно (до -6db) и, к сожалению, в разной степени теряют свою отдачу. Эта неприятная особенность вызвана растяжением ленты и снижение отдачи можно скорректировать, немного “подтянув” ленту. Иструкцию о том, как это делается можно легко найти на просторах интернета, но сразу скажу – если у вас нет необходимой сноровки и терпения, а так же измерительного оборудования – я настоятельно не рекомендую пытаться выполнить эту процедуру самостоятельно. В итоге, эта открывшаяся “страшная тайна” сильно подпортила репутацию Fountek и дальнейшее применение их ленточных твиттеров в моих конструкциях не планируется 🙂 .
Итерация № 1. Фильтр – традиционный параллельный.
Схема “традиционного” варианта фильтра выглядит так –
В общем – ничего особенного, первый порядок с цепью Зобеля на НЧ, второй порядок на СЧ, третий порядок с аттеньюатором – на ВЧ. Такая конфигурация практически гарантирует “правильную”, гладкую АЧХ и умеренно-неравномерную Z-ЧХ.
Расчеты:
Измерения:
В общем, практически с первого раза все (вроде бы) получилось “хорошо и правильно”. Звучание акустики с такими фильтрами – ровное, в меру выразительное, в меру строгое с хорошо локализуемыми КИЗ и довольно ограниченной областью “sweet spot” – то есть пришлось подвигать акустику (и диван) по комнате и внимательно выбрать точку для сосредоточенного прослушивания. И еще одна особенность – динамики не очень чувствительные, поэтому возникли особые требования к требуемой подводимой мощности. И да, конечно это ловушка – после примерно третьей доработки усилителя я начал подозревать что проблема не в нем и пожалуй уже точно пора дорабатывать акустику, а не усилитель. Первая мысль – снизить порядок фильтров и таким образом улучшить отдачу. Но, как я уже упоминал ранее – на практике это решение почти всегда ошибочно. Дело в том, что при низкой частоте раздела между НЧ и СЧ из-за параллельного соединения звеньев фильтра происходит наложение пиков импедансов НЧ динамика и ШП динамика в СЧ звене, что заметно снижает итоговую добротность НЧ звена, то есть пик итогового НЧ резонанса становится ниже и шире. На графике зависимости импеданса от частоты это проявляется как некоторая “полочка” на “седле” 🙂 между резонансными НЧ пиками. Это могло бы быть хорошо и “полезно”, если бы не вполне отчетливо слышимая модуляция СЧ диапазона в зависимости от уровня НЧ составляющей сигнала на средней и высокой громкости звучания – КИЗ размываются, локализация источников звука теряется. Поэтому параллельные фильтры первого порядка при низкой частоте раздела НЧ и СЧ (ВЧ) – это не самое лучшее решение. И тут я вспомнил о таком интересном варианте, как последовательный фильтр.
Итерация №2. Последовательный фильтр.
Этот тип фильтров стал широко известен в начале 70-х годов благодаря докладу Richard Н. Small на одной из сессий Audio Engineering Society. В материалах доклада в частности была такая интересная таблица.
Приведенная выше часть таблицы относится к расчету номиналов последовательного фильтра первого и квази-второго порядков.
(Почти) окончательный вариант схемы последовательного разделительного фильтра
Измерения:
Импеданс последовательного фильтра без нагрузки, импедансы НЧ и ВЧ звеньев
Импеданс НЧ звена – оформление ФИ и ПАС
Итоговый импеданс
Первоначальная АЧХ. Отчетливо видна “яма” на нижних СЧ, то есть полярность СЧ ВЧ динамика нужно поменять. В свою очередь это означает, что порядок фильтра скорее второй, чем первый
Коэффициент гармоник @1V@1000Hz
Я применил квази-второй порядок НЧ-СЧ фильтра. Это несколько ухудшило равномерность АЧХ и Z-ЧХ, но позволило сохранить сфокусированность КИЗ в широком диапазоне подводимой мощности. Уже при первом включении я заметил, что акустика “дышит”, музыка свободно льется и при небольшом уровне громкости. Идея о доработке и “подборе” требуемой мощности усилителя потеряла актуальность.
Несколько интересных фото.
Параллельный фильтр –
Последовательный фильтр –
“Лишние” детали 🙂
Фото готовой акустики.
P.S. (Апрель 2022)
Немного подкорректировал номиналы элементов разделительного фильтра. По-прежнему, обошелся без пассивной аттеньюации – то есть резисторов в фильтре нет. АЧХ акустики в моей системе, снятая в месте прослушивания (на диване), НЧ оформление – ФИ, ШП СЧ динамик – без виззера. Обратите внимание на то, что в диапазоне 50 Hz…20 kHz отклонение АЧХ укладывается в 5dB. Интересен и ход АЧХ на частотах ниже 40 Hz – это к вопросам об итоговой АЧХ всей системы и акустической подготовке комнаты для прослушивания. 🙂
Январь…Март 2022 г. Владивосток
В ожидании нового (красивого) корпуса:
Все-таки решил добавить ВЧ динамик.АЧХ до и после, микрофон по центру. Видно, что whizzer улучшает равномерность АЧХ и компенсирует провал в области 10К. Но, если микрофон отклонить на 40…60 градусов, то АЧХ становится примерно-аналогичной АЧХ без whizzer’а. 🙂
В итоге – удаление whizzer’а и добавление “правильного” ВЧ динамика дает более гладкую АЧХ и более широкую и равномерную диаграмму направленности на ВЧ.
Июнь 2021 г.Владивосток