Двухтактный усилитель для наушников STAX SR-007

Предварительно этот усилитель был “заявлен” на форуме doctorhead.ru (в теме “Схемотехника усилителей для электростатических наушников”). Здесь – полное описание конструкции.

1. Схема усилителя.

Принципиальная схема усилителя и его блока питания – STAX_Balanced_Triode_001.

Каждый из двух каналов собран по двухтакной схеме, на триодах со средним коэффициентом усиления (драйверный каскад), и на пентодах средней мощности в триодном включении (выходной каскад), без общей ООС. Прорабатывался вариант усилителя и с пентодным включением выходных ламп. Схема этого варианта приведена в конце статьи (*** будет добавлена чуть позже).

Для наглядности на схеме показан только один канал.

Первый (входной) каскад – балансный усилитель на двух триодах по схеме с общим катодом и резистивной анодной нагрузкой. В качестве ламп первого каскада применен двойной триод 6BZ7 (6BQ7), особенностью которого является хорошая линейность при сравнительно небольшом напряжении на аноде. Режим работы первого каскада – ток покоя каждого плеча 6.5…7 mA, напряжение на анодах + 140…+145V.  Напряжение смещения = -2.7…-3.1V.  Лампы для первого каскада должны быть отобраны по идентичности “половинок”.  Коэффициент усиления первого каскада =~15. Для полной «раскачки» выходных ламп необходимо напряжение на их сетках примерно 10…12V rms, таким образом чувствительность усилителя составляет примерно 0.7V rms.

В первом каскадt допустимо применение ламп 6BZ7, 6BQ7, 6DJ8, 6922, E88CC, ECC88, 6Н23П-ЕВ и даже 6Н1П-ЕВ (с некоторым снижением коэффициента усиления).

Второй (выходной) каскад усилителя собран по двухтактной схеме, с раздельным автоматическим смещением выходных ламп. Связь между каскадами – емкостная. Смещение задается резисторами R14, R15 в катодах выходных ламп. По переменному току эти резисторы зашунтированы конденсаторами С4, С5. Ток покоя составляет 27…29 mA для каждой лампы. Нагрузкой является выходной трансформатор, вторичная обмотка которого симметричная, со средней точкой. В качестве выходных трансформаторов применены изделия от компании Lundahl, модели LL1660S/PP, скоммутированные по схеме PP/PP c  коэффициентом передачи  (2.25+2.25):(2+2). Режим работы выходных ламп выбран таким образом, чтобы на нагрузке обеспечивался максимально возможный размах выходного напряжения при минимуме нечетных гармоник. Так как четные гармоники в двухтактном каскаде в значительной степени компенсируются, то при подборе выходных ламп в близкие по параметрам пары это позволяет получить очень низкий общий уровень гармонических искажений усилителя и обойтись без введения петли ООС.

В качестве ламп выходного каскада используются пентоды средней мощности 6GK6,  в триодном включении.  С некоторым ухудшением характеристик и с перепайкой цоколевки можно применить EL84, 6П14П-ЕВ.

Блок питания усилителя особенностей не имеет.

В качестве трансформатора питания и накала использован подходящий по парметрам весьма качественной трансформатор компании Hаmmond.

Накал питается напряжением переменного тока, для уменьшения уровня помех и наводок на накальные цепи, напряжение накала «поднято» над общим примерно на +80V при помощи делителя R12R13.

Анодное напряжение, необходимое для работы схемы, снимается со вторичной обмотки трансформатора питания и выпрямляется кенотроном. Выпрямленное напряжение (+415 V) фильтруется с помощью стабилизатора- электронного фильтра на транзисторе VT1, он же обеспечивает плавное нарастание анодного напряжения при включении усилителя. Напряжение на выходе фильтра = +385 V.  Напряжение BIAS (+580V), необходимое для работы телефонов STAX, формируется с помощью выпрямителя на полупроводниковых диодах VD2,VD3, простейшим стабилизатором на элементах R15ZD2…9,  и фильтром на элементах R16C13.

С предварительно подобранными лампами 6GK6 в выходном каскаде усилитель обеспечивает следующие характеристики –

  • Входное сопротивление = 49 кОм;
  • Выходное сопротивление, не более 2.4 кОм;
  • Максимальное выходное напряжение (на каждом из балансных выходов) = 185V RMS (518V Peak-to-Peak);
  • Номинальное входное напряжение = 700mV RMS;
  • Полоса воспроизводимых частот, при неравномерности +-1 dB и уровне выходного напряжения 100V RMS, на эквиваленте нагрузки сопротивлением 100 кОм = 20Гц…22кГц;
  • Общий коэффициент искажений на выходе усилителя, при уровне выходного напряжения 100VRMS = < 0.5% (Определяется точностью подбора по характеристикам ламп выходного каскада, при установке неподобранной пары ламп одного изготовителя и одной даты выпуска = < 2%);
  • Уровень шумов и помех на выходе усилителя, при минимальном положении регулятора громкости, измеренный на эквиваленте нагрузки сопротивлением 100 кОм = < -65dB;
  • Время выхода на «рабочий» режим после включения, <= 30 мин.

2. Благодарности

Выражаю огромную благодарность SharapOFF за возможность разработать и изготовить для него эту конструкцию, а так же за продуктивное обсуждение особенностей звуковоспроизведения. Выражаю надежду, что этот усилитель будет радовать его своим звучанием на протяжении многих лет.

Октябрь-Ноябрь  2012 года                                                               г. Владивосток

Заметки по поводу “моста”

В данном конкретном случае замечания будут не по поводу так называемого “Русского” моста и даже не по поводу упомянутого ранее “Золотого” моста.

В ходе проектирования блоков питания для мощных транзисторных усилителей я столкнулся с интересным видом помех, генерируемых двухполупериодным мостовым выпрямителем (схема Греца). Обычно в литературе причину возникновения этих помех объясняют примерно так —

“…Наличие инерционности полупроводниковых диодов приводит к появлению кратковременного короткого замыкания первичной сети через все одновременно открытые диоды выпрямителя и наличие нулевого значения напряжения на выходе устройства на интервале времени рассасывания зарядов (tр). Резкое запирание выпрямительного диода приводит к появлению высокочастотных колебательных процессов, частота которых определяется паразитными емкостями диодов, ёмкостью монтажа, соединительных линий и их индуктивными составляющими. Временные диаграммы иллюстрируют работу выпрямителя, когда период частоты переменного напряжения сети соизмерим с интервалом времени tр, что может иметь место в высокочастотных преобразователях с синусоидальным напряжением…”

Bridge_01

В нашем случае выпрямитель работает на емкостную нагрузку, и очевидно, что помехи связаны с несинусоидальной формой тока через диоды и с разбросом характеристик диодов в выпрямительном мосте. При этом длительность протекания тока через каждый из выпрямительных диодов меньше, чем при работе на активную нагрузку. С уменьшением уровня пульсаций выходного напряжения выпрямителя длительность открытого состояния диодов уменьшается, а амплитуда тока через них возрастает, что приводит к увеличению высокочастотных помех. (То есть – чем больше емкость первого конденсатора фильтра – тем шире ВЧ спектр помехи).

Bridge_02

На слух такая помеха проявляется как некий легкий, но навязчивый фон с удвоенной частотой сети (100 Гц). Уровень фона не зависит от положения регулятора громкости. “Поймать” эту помеху на выходе усилителя довольно затруднительно, поскольку ее уровень черезвычайно мал, около 0.5…1mV. На выходе источника питания эта помеха практически незаметна.  Но ее вполне отчетливо можно увидеть с помощью осциллографа, присоединив его щуп на выход “-” диодного моста, а “землю” на какую нибудь удаленную от блока питания шину. Расстояние между точками подсоединения осциллографа должно быть не менее 20 см, фактически измерение делается на короткозамкнутом участке цепи. Вот как “она” выглядит:

Bridge_Before_03

Верхний луч – пульсации выпрямленного напряжения на первом конденсаторе фильтра.

Еще несколько картинок.

После шунтирования электролитических конденсаторов фильтра питания  полипропиленовыми конденсаторами –

Bridge_Before_04

После изменения топологии фильтра по схеме С-RC-

Bridge_Before_02

Как видно, после предпринятых мер помеха, с одной стороны, несколько уменьшилась, а с другой – в ее спектре появилась значительная высокочастотная составляющая.

Нужно было применить метод, ограничивающий спектр излучаемой помехи, иными словами, нужно понизить частоты паразитных колебаний. Для этого есть известный старинный “фокус” – подключить параллельно каждому из диодов моста конденсаторы емкостью в несколько тысяч пикофарад (на практике – от 4700 до 47000 пФ), что снижает резонансную частоту паразитного контура в несколько десятков – сотен раз.

Если принять во внимание индуктивные составляющие сопротивления подводящих проводов питающих цепей выпрямителя, то снижение уровня помех можно достичь включением параллельно входным выводам моста аналогичного конденсатора. Наиболее универсальным и более рациональным способом снижения уровня помех является одновременно  уменьшение частоты собственных колебаний паразитного контура и уменьшение добротности паразитного контура. Это реализуется заменой шунтирующих конденсаторов на последовательные RC- цепи. Оптимальное значение сопротивления резисторов этих цепей проще всего определить экспериментально,  в зависимости от мощности выпрямителя оно может быть в пределах 10…100 Ом.

Возможен и другой способ снижения частоты паразитных колебаний, который обеспечивает уменьшение амплитуды импульса тока IДС. Он заключается в искусственном увеличении индуктивной составляющей сопротивления подводящих проводников с помощью  ферритовых колец малого диаметра, надетых непосредственно на выводы выпрямительного диода. При этом возрастает длительность интервала спада тока через запирающийся диод, что вызывает понижение верхней границы частотного спектра помехи.

Если же выпрямитель работает с напряжением частотой 50 Гц, диоды моста объединены в общий корпус и ток нагрузки точно не определен, то наиболее универсальным и простым методом подавления помех является является шунтирование диодов моста конденсаторами –

Bridge_Ground

Bridge_Before_01

Как видно, после проведения операции по шунтированию помеха существенно уменьшилась и ее спектр стал уже. Но – каким же образом полностью избавиться от нее?

Способов – несколько, и применять их нужно одновременно. Во-первых, диоды необходимо шунтировать конденсаторами, а точка соединения корпуса усилителя и “общего” должна находиться рядом с “общим” выводом диодного моста. Во-вторых, общий вывод диодного моста соединяется с общей шиной (и корпусом) через небольшой дроссель, намотанный толстым проводом на ферритовом кольце. В третьих – и это очень важно – в усилителе, блок питания которого выполнен по мостовой схеме, точка соединения корпуса и “общего” -это единственно возможная точка объединения “земель”, ни в каком другом месте корпус (шасси) не должен соединяться с “общим”. От этой точки разводится “общий” на питание различных модулей (если их несколько), на планки выходных разъемов. В этой же точке объединяются “общие” левого и правого каналов усилителя. В четвертых, фильтр должен быть выполнен по топологии С-RC, причем первая емкость фильтра не должны быть черезмерно большой, хорошее правило – 1000 мкФ на 1A потребляемого тока.  В результате –

Bridge_After_02

Апрель 2013 год                                                                               г.Владивосток

PS Две проблемы

Удивительно, что многие, кто сталкивался с проблемой возникновения помех в блоке питания и прочитали мою заметку, не заметили  двойственный характер возникновения проблемы. Во-первых, на что обычно все обращают внимание – это так называемый “дребезг” диодов, возникающий при их закрытии. Эта особенность довольно широко обсуждается на форумах, но к выпрямителям, сетевого напряжения частотой 50 (60) Гц в общем-то не имеет особого отношения. Во-вторых, что обычно упускают из виду, и на что хотел бы обратить внимание я – это взаимодействие трансформатора, выпрямителя и фильтра. Сочетание трансформатора с низкоомной вторичной обмоткой,  рассчитанного без запаса по индукции насыщения сердечника, конструктивно выполненного без технологического зазора, мостового выпрямителя на полупроводниковых диодах и фильтра с первым конденсатором необоснованно большой емкости – гарантирует резкое ограничение импульсов зарядного тока, возникающего из-за насыщения сердечника трансформатора. Импульс “ограниченного” зарядного тока имеет широкий спектр, большую длительность и, что самое неприятное  –  возникает и “живет” в силовом трансформаторе. Поэтому вполне очевидно,что  шунтирование выпрямительных диодов небольшими высокочастотными конденсаторами, применение диодов с меньшим падением напряжения и малым временем восстановления –  лишь несколько “сглаживает” форму импульса тока, но не избавляет от него, потому что силовой трансформатор все так же продолжит “наводить” помехи на соединительные провода и схемы конструкции. Если от такого выпрямителя питается двухтактный усилитель мощности, то в нагрузке синфазная помеха по “общему” и питанию” (или по “плюсу” и “минусу” в случае питания двойной полярности)  может почти полностью скомпенсироваться. В усилителях класса АВ – помеха возникает только при скачках потребляемого тока на пиках сигнала – и в значительной степени маскируется сигналом.  А вот в однотактных усилителях мощности, работающих в классе А (например, Follower или Zen) – помеха вполне очевидно слышна и даже видна – при помощи осциллографа. Продуманная “архитектура” фильтра выпрямителя и качественный, хорошо экранированный трансформатор питания для таких конструкций – предмет первой необходимости 🙂

Хорошего Звука,

Май 2015 г.                                                                                        г.Владивосток