Корректор “Coda”. Небольшая модификация.

Впервые я рассказал об этом корректоре в 2017 году. “Фишка” схемы – применение интегральных источников тока в качестве анодной нагрузки ламп – что, в свою очередь, позволило применить сравнительно низковольтное питание и при этом добиться максимального усиления каскадов. К сожалению, интегральные источники тока от IXYS сейчас не очень-то доступны к покупке, но “звучание” 6СА7 (6Ж4) в триодном включении по прежнему вызывает заслуженный интерес. Поэтому возник вопрос о модификации схемы и замене источников тока на что-нибудь другое – например на обычные резисторы. И да – это возможно, но конечно с некоторыми ограничениями. (“…но есть ньюанс “ (с) – народное творчество) 🙂

Итак, схема корректора и блока питания:

В корректоре по-прежнему два каскада усиления, требуемое напряжение источника питания + 260…+310V. Коэффициент усиления первого и второго каскадов ~ 35…40 и он сильно зависит от экземпляров ламп. Выходное сопротивление – в пределах 3…4 кОм, то есть очень желательно, чтобы у усилителя, в комплекте с которым будет работать корректор, входное сопротивление было бы не менее 30…50 кОм. Лампы 6Ж4 отличаются разбросом характеристик в зависимости от даты выпуска, поэтому верным решением будет применить лампы 50х…70х годов в достаточном количестве. Для отбора 4 шт подходящих и одинаковых по усилению и по минимуму микрофонного эффекта понадобится примерно 20…25 шт. Относительно 6Ж4 у оригинальных 6СА7 ситуация с “одинаковостью” значительно лучше, но микрофонный эффект разной степени интенсивности проявляется и у них. Резисторы R8 + R9 можно заменить одним = 82 кОм, а вот R10 наоборот, составить из двух резисторов = 10 кОм +560 Ом. R12 лучше взять = 330 Ом. При отборе С4 и С5 желательно, чтобы соотношение их коминалов было = 2.92. Межкаскадный конденсатор С8 допустимо взять в пределах 0.1…0.68 мкФ. Если С8 = 0.1 мкФ, то спад АЧХ на частоте 20 Нz будет около 3..5 dB, что может быть полезно для некоторых вертушек с повышенным уровнем рокота. Как я уже упоминал, выходное сопротивление корректора довольно большое и входное сопротивление усилителя будет 30…50 кОм, поэтому С7 может быть в пределах 1.5….3.3 мкФ, увеличивать эту емкость сверх необходимого не нужно.

При расчете достаточного усиления корректора я исходил из того, что чувствительность по входу “типичного” усилителя – около 0.7V RMS и из того, что уровень выходного напряжения “типичного” ММ звукоснимателя составляет около 4..5 mV@(1000 Hz 5 sm/s). Итоговый коэффициент усиления корректора ~ 110…120 (@1000 Hz), что обеспечивает его совместимость с большинством ММ звукоснимателей.  

Блок питания корректора практически стандартно-типовой для моих конструкций. Накал ламп питается выпрямленным стабилизированноым напряжением. “Минус” источника питания накала и “общий” источника анодного питания соединяются с шасси в одной точке, рядом с первым каскадом.

Особенности конструкции:

Несколько месяцев назад известный аудиоэнтузиаст Валерий из Санкт-Петербурга (фото некоторых его замечательных конструкций размещены на сайте в разделе “Репликации и Генезис”) прислал мне “для опытов” интересное стальное шасси в наборе с колпаками для трансформаторов. Это шасси хорошо подходило по размеру – и я решил собрать корректор в нем. Для “эзотерической гармонизации” и эстетического соответствия шасси было дополнено декоративными деревянными “щечками” 🙂 , а для лучшей виброразвязки – специальными виброгасящими композитными (пластик + резина) ножками. Кроме того, свободные внутренние поверхности и нижняя крышка (дно) шасси были оклеены двухслойным виброгасителем Шумоff. Эти меры, а так же применение трансформатора блока питания с пониженной индукцией сердечника, межобмоточным экраном и двумя внешними стальными кожухами – позволило разместить корректор и блок питания в одном корпусе. Такое решение надежно защищает схему от вибраций и наводок от сетевого трансформатора.

Неcколько фото

Июль 2023 г. Владивосток

P.S. Отзыв счастливого владельца конструкции:

“…Виктор, здравствуйте!

Ну что же, пишу первые впечатления от корректора  Когда я получил аппарат, то сказал, что напишу не сразу, а через некоторое время, чтобы написать что-то более осмысленное, чем просто «вау! класс! обалдеть!». 

И вот это время прошло, и мне хочется написать… 

Вау! Класс! Обалдеть!

Писать про техническую сторону не очень хочется, про все эти аудиофильские термины: про сцену в ширину и глубину, про такой уровень детальности, когда я узнал, оказывается, что и у «тарелочек» есть у каждой своя нота… Я думаю, что это важный аспект, но, тем не менее, не самый важный. 

А вот действительно важный вопрос в звучании, это вопрос, который касается более высоких материй, чем просто техническая сторона. Я долго думал, как же охарактеризовать это ощущение от прослушивания живой музыки, когда чувствуется какая-то невероятная слитность, музыка как бы льется что ли… Когда чувствуешь, что музыканты вкладывали душу в свои вещи…

И лучше всего, на мой взгляд, это ощущение коротко и ясно характеризуется одним словом: звучание душевное.

Моя жена, человек, далекий от аудиофилии, полностью с этим согласилась: звучание такое душевное, что не хочется отрываться и менять треки или пластинку… 

И это еще при том, что корректор только начал работать, да и картридж тоже не ахти какой: Ortofon 2M Blue. Что же будет, если поставить приличный картридж…

Ну что же, теперь на очереди напольная версия АС «Проще простого» + супертвиттер, а потом MC-картридж…

Отпишусь вам как закончу с АС.

Как всегда с благодарностью к вам,

Антон.”

Неожиданный гость – Однотактный “универсальный” усилитель для наушников Cayin HA-300

Этот усилитель приехал ко мне на диагностику и (возможный) ремонт и upgrade примерно пару недель назад. Проблема была типичная для этой конструкции (по ссылке – примерно 244 страницы темы популярного форума) – фон переменного уровня в одном из каналов.

Немного об усилителе (взято с сайта продавца, стилистика и характерная терминология сохранены):

“…Усилитель Cayin HA-300 разработан c применением пары подобранных триодов Gold Lion Genelex PX300B с низким уровнем шума на выходе, дополняемой парой подобранных классических ламп Tung-Sol 6SN7GTB для усиления двухтактного сигнала.

Сменные режимы усиления (Gain) делают HA-300 чрезвычайно универсальным для корректной работы с широким диапазоном наушников. Пользователю доступно на выбор три варианта усиления: L: 8-64 Ом; M: 65-250 Ом; H: 250-600 Ом.

Cayin HA-300 MK2 можно использовать в качестве усилителя для колонок с высокой чувствительностью. Выходной мощности 8 Вт на канал в чистом “А” классе достаточно для подключения большинства АС.

Внешний блок питания хорошо защищен от внешних помех. Роль выпрямительных ламп отведена четырем лампам NOS 22DE4 известного бренда RCA. В нем установлен тороидальный трансформатор ручной намотки и питает каналы усиления независимо. Это позволило добиться максимально равномерного питания независимо от выбранного режима усиления и нагрузки на отдельный канал.

В дополнение к 6.3-мм небалансному выходу на наушники усилитель оборудован 4-контактным балансным XLR-разъёмом.

Выходная мощность для наушников:

  • XLR: 2000 мВ (L), 2400 мВ (M), 6000 мВ (H)
  • 6.3 мм: 1200 мВ (L), 2200 мВ (M), 5000 мВ (H)

Особенности:

  • лампы: 2 x Tung-Sol 6SN7GTB, 2 x Genalex PX300B, 4 x RCA 22DE4
  • трансформаторный выход для небалансного и балансного подключения
  • изготовленные вручную трансформаторы El Transformers
  • три режима усиления от 8 Ом до 600 Ом
  • выходы на наушники: 6.3 мм, 4PIN XLR
  • клеммы для подключения акустики
  • выходная мощность для АС 8 Вт на канал в классе А
  • режим прогрева перед началом работы
  • 13-мм передняя панель из алюминия
  • балансный 41-позиционный потенциометр ALPS …”

Распаковал конструкцию, собрал, подключил источник и акустику – включил, послушал около 3-х часов. На первый взгляд – все в порядке. Некоторый фон при “запуске” присутствует – но это нормально, дальше при прогреве и (очевидно) полной зарядке конденсаторов фильтра питания фон уменьшается и где-то минут через 30 становится практически неслышным.

Решил, что завтра послушаю подольше и уже с наушниками с разными импедансами – Audezee LCD-3, Sennheiser HD-700, HD-800 и Beyerdynamics DT-150, DT-250.

На следующий день послушал подробнее, с разными наушниками.
Результаты несколько удивили – с изодинамикой LCD-3 этот усилитель показал себя весьма скромно – звук умеренно-объемный с несколько резковатыми СЧ и сглаженной динамикой.
При этом с моим же транзисторником (Zen Monster JLH) эти же LCD-3 звучат принципиально иначе.
С Sennheiser HD-700 усилитель “раскрылся” – звук выразительный, объемный, детальный – в общем – именно то, что нужно. Проблема только одна – для этих наушников такой мощный усилитель не нужен, его конструкция избыточна – эти наушники способны звучать так же хорошо и от существенно более скромных ламповых конструкций.
Аналогичные впечатления и от прослушивания с DT-250.
По работе усилителя (шум, фон и т.п.) проблем не обнаружил. 🙂

Ближе к вечеру решил заглянуть внутрь конструкции и внимательно посмотреть на компоненты и монтаж.

По усилителю.

Частично он очень напоминает Woo Audio WA5, схемное решение драйвера и выходного каскада практически идентичны, схему можно легко найти в соответствующей статье на моем сайте. Я не буду афишировать режимы работы каскадов усилителя, скажу лишь, что ни о каких 8 Вт выходной мощности на канал речи быть не может. Максимум – 6…7 Вт при коэффициенте гармоник ~ 3…5% (Возможно 8 Вт нужно понимать как 4 Вт+4 Вт 🙂 )

Усилитель задуман с претензией на “универсальность”, то есть его выходные параметры должны быть совместимы практически со всем диапазоном импедансов наушников. Для этого, во-первых – выходной трансформатор выполнен с довольно сложно коммутируемой секционной вторичной обмоткой и, во-вторых – каскады усилителя охвачены общей петлей отрицательной обратной связи.

Коммутируемая вторичная обмотка, по логике разработчиков – должна обеспечить стабильность импеданса нагрузки лампы выходного каскада, а общая ООС введена для стабилизации усиления при разбросе характеристик ламп и для уменьшения выходного сопротивления.

На мой взгляд, сама идея “универсальности” конструкции мощного двухблочного усилителя для наушников общим весом ~29 кГ немного странна. Дело в том, что мощный “особый” усилитель нужен только для низкочувствительной изодинамики, для более чувствительных изодинамических и динамических наушников такой подход черезвычайно (в разы) избыточен. По весу – на мой взгляд вполне достаточно от 8 до 16-ти килограмм при сопоставимой выходной мощности. 🙂

Аудиофил, покупающий совершенно не универсальные, очень очень особые и (как правило) очень дорогие низкочувствительные изодинамические наушники – меньше всего думает о приобретении для них “универсального” усилителя. На мой взгляд – “универсальность” совместимости импедансов нагрузок для таких случаев совершенно лишняя. Вполне достаточно было бы обеспечить размах выходного напряжения не менее 10V RMS на нагрузке выше 16 Ом при выходном сопротивлении 1.6…2 Ом – и такой усилитель будет практически “универсальным” для 99% наушников. Примерно такой подход вполне успешно работает в транзисторных конструкциях. Помимо более простого и качественного выходного трансформатора это решение позволило бы убрать из конструкции несколько плат с реле коммутации обмоток выходных трансформаторов и несколько метров проводов. Для наушников с высокой чувствительностью можно было бы просто предусмотреть дополнительный аттеньюатор входного сигнала, чтобы диапазон регулировки громкости был такой же широкий, как и для низкочувствительной изодинамики.

Выходной сигнал между наушниками и акустическими терминалами можно было бы коммутировать (если такая коммутация вообще нужна) вполне доступными высококачественными переключателями, а не платой очень обычных реле с транзисторными ключами и логикой управления.

Монтаж усилителя стал бы в разы свободнее, а так называемый “путь” сигнала протекал бы только по коротким паяным соединениям с минимумом коммутируемых контактов, а не через разъемы и дорожки на печатных платах, метры проводов и коммутирущие контакты реле.

По уровню комплектующих – он вполне себе приличный. Резисторы Mills, Yageo, Takman, межкаскадные конденсаторы Mundorf Silver/Gold, электролитические конденсаторы Nichicon, Panasonic.

По блоку питания – его конструкция интересна и традиционна.
Мне не очень понятно, зачем применены кенотроны и почему они именно этой марки. Насколько я смог разобрать из монтажа, схема выпрямления совершенно стандартна – двухполупериодный выпрямитель со средней точкой вторичной обмотки, диоды (кенотроны) соединены параллельно попарно и после них, перед конденсатором фильтра – добавлен еще и полупроводниковый диод – вероятно на тот случай, чтобы защитить конденсаторы фильтра выпрямителя в случае замыкания в одном из кенотронов. 🙂 Фильтр двухступенчатый, первая ступень – дроссельный фильтр по топологии C-L-C.

Через соединительный кабель с блока питания на усилитель подаются – выпрямленное и частично отфильтрованное высокое (анодное) напряжение, три выпрямленных напряжения накала – ±5V для ламп 300В левого и правого каналов и ±6V для драйверных ламп и служебные напряжения для цепей коммутации и питания обмоток реле. Эти напряжения не стабилизированы, вероятно по логике разработчиков питание выходных ламп выпрямленным нестабилизированным напряжением вполне достаточно для получения требуемого минимума помех.

В усилителе выпрямленное анодное напряжение через дополнительный фильтр на полевом транзисторе поступает на схемы левого и правого каналов. После транзисторного фильтра установлены электролитические конденсаторы довольно большой емкости (220+220 uF). Часть электролитических конденсаторов дополнительно шунтированы пленочными конденсаторами емкостью 0.1 uF.

Насчет помех – в этом усилителе они четко разделяются на электрические и механические. Электрические определяются схемным решением и особенностями монтажа. В этой конструкции минимальный уровень электрических помех будет при коммутации импеданса нагрузки (и соответственно вторичных обмоток выходного трансформатора) в положение “L”, при балансном подключени как входного сигнала, так и нагрузки.

Механические помехи зависят от вибрации нитей накала выходных прямонакальных ламп под воздействитем электрического тока и полностью определяются особенностями конструкции их электродной системы, то есть ниже определенного уроня они не могут быть уменьшены. Это, кстати, одна из причин, почему усилители для наушников с выходными прямонакальными лампами в основном рекомендуются для наушников с низкой отдачей. В этой конструкции накал выходных ламп питается от выпрямленного, но не стабилизированного напряжения – поэтому в некоторых случаях, какие-то «недофильтрованные» гармоники частотой 100 Гц могут вызывать вибрацию нитей накала, на слух это обычно проявляется как некий едва заметный «зудящий» звук, по идее он должен уменьшаться по мере прогрева ламп.

На следующий день я еще раз послушал усилитель и проконтролировал режимы работы ламп. Предварительно (на первый и второй взгляды) – режимы стабильны, ремонта усилителя не требуется.

Насчет возможного upgrade – у меня возникли некоторые сомнения. Очень важно то, что ликвидность усилителя после upgrade скорее всего уменьшится. Как правило, потенциальные покупатели всегда предпочитают оригинальные изделия, без какого-либо вмешательства. Поэтому, если в перспективе предстоит продажа усилителя, то было бы правильнее воздержаться от даже самой небольшой доработки.

В том же случае, если продажа не предполагается и усилитель рассматривается исключительно как платформа для модификации, то я бы сделал следующее:
Переделал блок питания, убрал бы кенотроны 22DE4 и по возможности стабилизировал бы напряжение накала ламп 300В;
В блоке усилителя переделал (минимизировал) коммутацию сигнальных цепей и выходного трансформатора;
Доработал бы фильтр напряжения анодного питания, возможно стабилизировал напряжение, по возможности пересобрал бы схему навесным монтажем, без печатных плат;
Полностью бы переделал драйверный каскад – отказался бы от “сомнительной” (на мой взгляд) самоочевидной двухкаскадной схемы на двух триодах лампы 6SN7 и сделал бы драйверный каскад на пентоде – 6AG7 (6П9) или 6AC7 (6Ж4) – это бы принципиально изменило “динамику” и “наполненность” звучания. Усилитель должен “запеть” в том числе и с изодинамикой, хотя бы с LCD-3;
Так как вторичные обмотки выходого трансформатора в моем варианте не переключались бы в зависимости от импеданса наушников – то можно обойтись без ООС, что существенно улучшит “сцену” и “объем” звучания.

Но, повторюсь – все это стоит делать, только если усилитель остается в длительном пользовании и его продажа или замена не предполагается.

P..S Иногда бывает проще сделать заново – сразу именно так, как нужно – чем переделывать уже готовое изделие. Поэтому – upgrade было решено не делать.

Несколько фото: Особенности конструкции видны вполне очевидно 🙂

Июнь 2023 г.Владивосток

Upgrade акустики KEF Reference Model Four

Уже довольно долго во Владивостоке живет Виталий – увлеченный творческий энтузиаст-аудиофил, с “правильными” руками и трезвым рассудком.

Виталий имеет богатый опыт в изготовлении кабелей, сборке и ремонте МС трансформаторов, проигрывателей винила, “рекаппинге” (recapping) усилителей мощности и предусилителей.

Весной этого года он поставил цель – провести разумный и эффективный upgrade и (может быть) некоторую доработку имеющейся в его системе акустики KEF Reference Modеl Four, выпуска 90-х годов прошлого века.

Из очевидно слышимых причин уже назревшей необходимости upgrade – ощутимый недостаток ВЧ и гулкость, расплывчатость звучания на НЧ. При этом звучание системы в целом – объемное, ровное, увлекающее. Помещение для прослушивания акустически обработано верно.

Сдерживающие факторы – небольшой опыт в подобной работе с АС, отсутствие требуемой измерительной аппаратуры и навыков проведения измерений, необходимых в процессе отладки.

Решение – пригласить меня в качестве консультанта и метролога 🙂

Акустика KEF Reference Mоdel Four устроена довольно оригинально. Вот здесь можно почитать о ней более подробно. На первый взгляд – внешний вид вполне традиционно – обычен:

А вот внутренее устройство – весьма не тривиально:

Как видно – то, что снаружи выглядит как порт фазоинвертора – таковым не является, НЧ динамики расположены во внутреннем объеме в комбинированном оформлении – ЗЯ, bandpass и ФИ одновременно 🙂

Фото и схема “старых” разделительных фильтров

Принципиальная схема разделительных фильтров акустики KEF Reference Model Four

Видно, что фильтры довольно многополосны и весьма “ветвисты” 🙂 , что отчасти объясняется особенностями акустического оформления. Я не увидел необходимости в коррекции частотного диапазона полос фильтров, пересчете номиналов элементов и последующей “пересшивке” полос. Тут разработчики потрудились весьма искусно и вмешиваться в результат их труда нет никакого смысла.

Было принято решение ограничиться (всего лишь) следующим

  • Заменить все конденсаторы и резисторы и пересобрать фильтры навесным монтажом. Убрать фильтры из внутреннего объема акустики и разместить их в во внешних коробах, которые будут крепиться к задним стенкам акустических систем.
  • Заменить контактные клеммы – терминалы.
  • Заменить всю внутренюю проводку.
  • Задемпфировать и акустически обработать внутрение поверхности корпусов акустических систем и корзины динамиков.

Что и было сделано Виталием 🙂

Собраны новые фильтры, для них изготовлены и закреплены на задних стенках внешние короба, заменена вся внутреняя проводка

Сделана механическая и акустическая доработка корпусов, корзины динамиков оклеены акустическим войлоком. Вырезы для крепления клеммных колодок на задних стенках корпусов были аккуратно закрыты фанерными вставками, внутренние поверхности корпусов задемфированы Шумоff, герметиком и акустическим войлоком. Свободный объем коробов, в которые установлены “новые” фильтры – заполнен демпферным материалом. Установлены новые высококачественные медные клеммы-терминалы.

Доработка в высшей степени благотворно сказалась на звучании акустики. Края дипазона слышимо расширились и особенно это стало заметно в ВЧ диапазоне. СубНЧ и НЧ “подсобрались”, стали более динамичными, четкими и разнообразно-детальными. СЧ область, голосовой диапазон стал более объемен, выразителен и “многослоен”. ВЧ – как бы “заново проявились”, их уровень стал ровно таким, сколько нужно – не больше и не меньше. Доработка полностью оправдала себя, акустика и система в целом вышли на принципиально более высокий уровень.

Зависимость импеданса акустики от частоты.

График зависимости импеданса акустики KEF Reference Model 4 от частоты. Левый и Правый каналы.

АЧХ акустики, снятая в ближнем поле в реальной комнате для прослушивания.

АЧХ акустики KEF Reference Model 4. Сглаживание 1/3 октавы. Ближнее поле, комната для прослушивания.

Июнь…Сентябрь 2022 г. Владивосток

Третья жизнь “Элегантных Шорт”

У аудиофилов беспокойные души. И вот, так случилось, что после июньской “трансформации” из двухтакта в однотакт этот усилитель снова попал ко мне. То есть после вдумчивого и внимательного прослушивания владелец конструкции решил, что все-таки для его системы двухтактный усилитель подходит лучше. В конце сентября у меня выдалось несколько более-менее свободных дней и я согласился на эту работу, взяв с владельца общание, что это в последний раз. Дальше – никаких переделок, только новый усилитель. 🙂 Вместе с усилителем мне привезли пару двухтатных выходных трансформаторов от Audiokom. Нужно отметить, что трансформаторы оказались весьма хорошими, но не без недостатков – конструкторское решение крепления тяжелого “куба” к шасси на 4 винта M3 пожалуй слишком оптимистично и неудобно. Так можно крепить легкие колпаки, а вот крепление тяжелого трансформатора сверху шасси на маленькие винтики, которые нужно вкрутить изнутри шасси снизу – без помощи квалифицированного ассистента превращается в некий “квест”. 🙂 Шпильки М4 или даже М5 были бы гораздо надежнее, практичнее и удобнее в монтаже. Я применил комбинированное крепление на винты и шпильки. Шпильки – направляют и фиксируют положение, винты – крепят.

Схема усилителя

Схема усилителя после upgrade

Схема унифицирована, множество моих конструкций имеют такое же схемотехническое решение. Схема блока питания так же типичная, с выпрямителем на ПП диодах и фильтром на полевом транзисторе и поэтому я ее не привожу. Ассортимент резисторов и конденсаторов сведен к минимуму. Для желающих повторить – внесение изменений в схему не приветствуется. По лампам – в первом и во втором каскадах можно применить “наши” 6Н1П-ЕВ, в выходном каскаде – 6П6С, 6П3С(Е) или NOS китайские 6P6P (темная колба), 6P3P (фигурная колба). Результат замены – впечатляющий 🙂

Технические характеристики усилителя

  • Входное сопротивление = 50 кОм
  • Выходное сопротивление =<~ 2 Ом
  • Номинальная нагрузка = 8 Ом
  • Номинальное входное напряжение = 0.775V RMS
  • Максимальное выходная мощность на нагрузке 8 Ом = 10W RMS (выходные лампы – 6P6S)
  • Полоса воспроизводимых частот, на нагрузке = 8Ом при выходномнапряжении = 0.7 от максимального = 20Гц….28 кГц.
  • Коэффициент гармоник на частоте 1 кГц на нагрузке 8 Ом при выходном напряжении = 0.9 от максимального <= 1.7%, в основном 2-я гармоника. Уровень третьей гармоники относительно уровня второй <= -22dB.
  • Время выхода на рабочий режим =< 15 min, это связано установлением теплового обмена в корпусе усилителя и прогревом ламп.

Несколько фото, снятых в процессе прослушки-отладки

Сентябрь 2022 г.Владивосток

“Элегантные Шорты” или однотактный upgrade

Примерно три недели назад мне принесли мой двухтактный усилитель 2012 года.

На фото – версия усилителя с выходными лампами 6П41С. В дальнейшем были заменены на 6П3С

Конструкция довольно успешно и интенсивно проработала в системе замечательного увлеченного меломана Вадима из г. Находка, но недавно одна из выходных ламп все-таки вышла из строя и усилитель нуждался в небольшом ремонте и профилактике. В ходе обсуждения деталей появилась идея – а не сделать ли этот двухтактный усилитель однотактным? У Вадима в запасе оказался интересный комплект винтажных ламп EL34 от Mullard и 12AX7 от Telefunken, а у меня очень удачно оказалась “под рукой” пара однотактных выходных трансформаторов, изготовленных Эдуардом на сердечниках Hammond. Помимо хорошего “железа” трансформаторы интересны еще и тем, что в их конструкции предусмотрена обмотка катодной ОС. Делать обычный однотакт на EL34 в триодном или в пентодном включении с общей ООС – было бы слишком традиционно 🙂 , а вот посмотреть (на осциллографе и анализаторе спектра) и послушать (в системе) и напомнить как “звучит” настоящая катодная ОС – было очень интересно.

Двухтактник был полностью разобран, лишние отверстия закрыты накладками, пришлось просверлить несколько дополнительных крепежных отверстий для выходных трансформаторов и заново покрасить шасси.

Вот что получилось в результате:

Схема переделанного усилителя –

Однотактный усилитель на 12AX7 и EL34 с катодной связью в выходном каскаде

Традиционная двухкаскадная схема, первый каскад – на соединенных параллельно “половинках” двойного триода 12AX7. Такое решение я выбрал потому, что от драйверного каскада требовался вполне определенный спектр гармоник, по этой же причине катодный резистор не шунтирован конденсатором. Второй каскад – с комбинированным регулируемым смещением. EL34 – в пентодном включении, в каскад введена последовательная ООС по напряжению через дополнительную катодную обмотку. Соотношение витков катодной и анодной обмоток ~1 к 9, то есть коффициент обратной связи β=Wк/(Wa+Wк) = 0.1. В таком включении каскад на EL34 ведет себя “как будто” это каскад на триоде с “мю” около 8 и внутренним динамическим сопротивлением около 1.6…1.8 кОм. Выходное сопротивление каскада для нагрузки 8 Ом составляет около 2.7…3 Ом, выходная мощность – около 5…6 Вт. Так много “около” потому, что выходные характеристики существенно зависят от тока покоя каскада. На мой слух (и измерения это подверждают 🙂 ) наиболее гармоничный спектр искажений на выходе усилителя получается при токе покоя = 68 mA, при этом на полной выходной мощности происходит частичная компенсация гармоник второго каскада гармониками первого. В итоге на выходе – плавноспадающий спектр искажений, примерно 4% – вторая гармоника, 0.2% – третья, 0.1% – четвертая, уровень гармоник более высоких порядков ничтожно мал. Так как смещение каскада комбинированное регулируемое, то в качестве входных ламп можно установить например 6L6G, 5881, 6CA7, 807 (с переходником), KT66, KT88 и (даже) “наши” 6П3(С)(EB). Конечно при замене ламп режим каскада обязательно нужно подстроить.

Я применил вполне обычные комплектующие – резисторы Vishay-Dale Copper Film и проволочные резисторы Dale, конденсаторы в источнике питания – Nippon Chemicon, Panasonic и Rubycon. В качестве межкаскадных я применил рулонные конденсаторы ФТ3 (фольга + тефлон) 70-х годов выпуска (военная приемка). Помимо поистине выдающихся габаритов 🙂 , они отличаются весьма интересными музыкальными свойствами – звучание усилителя получается чистое, четкое с отличной проработкой ВЧ диапазона и локализацией КИЗ.

Усилитель благополучно эксплуатируется в составе системы с большой полочной ШП акустикой на динамиках Tang Band TB W8-1772.

Июнь 2022 г. Владивосток

Последнее эхо “Голубой Ноты”

В первый раз этот (BlueNote S3) усилитель попал ко мне примерно в 2009 году. Фото оригинальной конструкции (взяты на просторах интернета) –

Технические характеристики:

  • Выходная мощность: 2 x 40W (20Hz-20 000Hz)
  • Частотный Диапазон: 20Hz-20 000Hz (+/- 3 dB)
  • Уровень помех на выходе усилителя: -90 dB
  • THD: 0,2% (20Hz-20 000Hz)
  • Входное сопротивление: 47kΩ
  • Чувствительность: 550mV
  • Габаритные размеры: 430 x 90 x 350 mm
  • Вес: 10 kg

Во время прослушивания музыки счастливый владелец нечаянно замкнул акустические клеммы, в усилителе что-то щелкнуло, пошел легкий синий дымок и звук пропал. Мне это показалось странным, так как в устройствах подобного класса защита выхода от случайного замыкания в нагрузке – это must have и поэтому – из любопытства и сочувствия я согласился посмотреть, что же там случилось. При беглом осмотре я обратил внимание, что акустические терминалы не изолированы. То есть их замыкание – лишь вопрос времени, что для транзисторного усилителя может быть фатальным. Вскрытие показало, что сгорели выходные транзисторы. Это, в общем-то я и ожидал увидеть, но – почему, почему ??? Традиционная схема защиты с реле – на плате присутствует, более того – присутствует и схема аварийного отключения при перегреве. Пришлось по монтажу на плате немного восстановить принципиальную схему, “прозвонить” некоторые элементы и тут выяснилась довольно забавная особенность – при монтаже в схему защиты (по ошибке ?) был установлен транзистор “не той” проводимости. В общем – итальянцы ожидаемо-традиционно “жгут” 🙂 Я заменил клеммы для подключения акустики на изолированные, заменил транзисторы, настроил ток покоя, провел контрольное измерение технических характеристик и контрольное срабатываение схемы защиты – и благополучно отдал усилитель счастливому владельцу.

Прошло 10 лет. И – “…никогда такого не было и вот опять...” мне позвонил владелец этого уникального изделия, сделанного руками итальянских мастеров (handcrafted in Italy) – так как ситуация повторилась с пугающей идентичностью. “Щелк – и тишина”. Очередное вскрытие показало – что на этот раз сгорело практически все – все выходные и предвыходные транзисторы, часть транзисторов во вспомогательных цепях, “вспухла” часть конденсаторов и сгорела одна из вторичных обмоток одного из трансформаторов питания. Интересно девки пляшут. (По 4 шутки в ряд). Как выяснилось, вероятной причиной столь масштабных разрушений явилось межобмоточное замыкание в трансформаторе питания, которое вызвало пробой двух диодов в выпрямителе – переменное напряжение прошло в схему, фильтрующие конденсаторы (естественно) перегрелись – и далее по списку. Но – как же схема защиты? К моему удивлению, во время катастрофы ни одна схема защиты не пострадала. Как выяснилось, питание на схему защиты подается от основного источника и при замыкании в источнике питания защитное реле просто не включилось. Я-то предполагал, что схема защиты питается от отдельного маленького трансформатора, который скромно, но с намеком расположен рядом с основными “большими” трансформаторами. Все оказалось проще – этот маленький трансформатор предназначен только для выпрямителя блока питания дистанционного управления громкостью. В общем – итальянцы “зажигают” до последнего транзистора 🙂

Совершенно очевидно, что восстанавливать изделие до его первоначального вида не имело никакого смысла – во первых затраты выходили слишком уж большими, а с учетом ремонта трансформатора питания – аутентичность конструкции (в хорошем смысле этого слова) сохранить бы не получилось и во-вторых – этот усилитель в аудиосистеме был в качестве “запасного” и особых звуковых надежд на него никто уже не возлагал. Меня попросили сделать “ну хоть что-нибудь”… Хмм..

Что-нибудь” у меня было. От прошлых опытов у меня остался цифровой усилитель – оригинальный Evaluation Mоdule TPA3255EVM от Texas Instruments. Должен отметить, что после небольшой доработки этот “модуль” может звучать очень даже прилично. В одной из конфигураций я включал его совместно с буферным каскадом на лампах и результат был очень, очень многообещающим. По моему мнению, такая конструкция вполне успешно может конкурировать с например таким усилителем, как Model 825 от Jeff Rowland Design, который как раз “гостил” у меня в то время. Гибридный лампово-цифровой усилитель планировался к выпуску под именем “Zen Monster Digital Hybrid”. Но – что-то мне мешало предложить это изделие широкой публике. Может быть – любовь к “чистым” лампам, которая пару лет назад таки вынудила меня отказаться от предложений к заказам усилителя Zen Hybrid.

Ну, что же – так как один из двух трансформаторов питания был исправен, то его я и применил для блока питания, выходное напряжение получилось +33…+35V при токе нагрузки до 3…3.5A (RMS), то есть ~100W очень хорошего качества. От оригинальной конструкции остались корпус, входные гнезда, регулятор уровня, селектор входов. Естественно, всю сигнальную проводку, которая была выполнена на “лентах” я заменил на нормальную, аналогично я поступил и с проводкой в цепях питания. На обратной стороне платы Evaluation Module я заменил электролитические межкаскадные конденсаторы на значительно более интересные по звуку пленочные, добавил схемы “soft start” и “reset + mute” и вот что получилось в итоге –

Технические характеристики:

  • Номинальная выходная мощность: ~2 x 30W (10Hz-20kHz) @ 4 Ohm
  • Минимальное сопротивление (импеданс) нагрузки = 2 Ohm
  • Номинальный Частотный Диапазон: 10Hz-20kHz (+/- 0.2 dB)
  • Уровень помех на выходе усилителя: <=-75 dB (10Hz-20kHz)
  • THD: 0,1% (10Hz-20kHz)
  • КПД ~ 79…85% (зависит от сопротивления нагрузки)
  • Входное сопротивление: 47 kΩ
  • Чувствительность по входу: = 700 mV
  • Габаритные размеры: 430 x 90 x 350 mm
  • Вес: 7 kg

Должен отменить, что “Evaluation Module” имеет довольно хорошую схему защиты – например мне так и не удалось довести усилитель до перегрева и (или) сжечь предохранители, замыкая выходы на общий или между собой. При перегрузке или “просадке” напряжения источника питания усилитель благополучно переходил в режим “mute” и восстанавливался при отключении и последующей подаче питания. Судя по всему, защита модуля все-таки будет понадежнее, чем у “Голобой Ноты” в оригинале.


По звуку:

Из “плюсов” – во первых – звучание очень чистое, детальное и объемное. Выдающиеся (да!) пространственные характеристики, замечательная прорисовка сцены. Отличное разрешение, очень хорошие динамические характеристики, ровный тональный баланс, очень хороший контроль НЧ.

Из минусов – некоторая “отстраненность” звучания, впрочем характерная почти для всех транзистоных усилителей. В звуке превалирует аналитичность в ущерб эмоциональности.  Ощущается некоторая зависимость качества звучания и динамических характеристик от громкости, усилитель “просыпается” при громкости от средней и выше. Но, собственно эти особености становятся очевидно заметны только при прямом сравнении с моими домашними ламповыми усилителями мощности 🙂

Февраль 2021 г.Владивосток

STAX SR-009S

Недавно получил для upgrade один из своих усилителей для электростатических наушников. С усилителем приехали STAX SR-009S.

Слушаю. Редкое ощущение, когда от музыки в наушниках возникает чуть ли не физиологическое 🙂 ощущение “переноса” в пространство исполнителей. Полное погружение. Удивительные наушники. И да – версия “S” действительно слышимо лучше оригинальных 009.

PS Мой усилитель, конечно тоже черезвычайно хорош 🙂

PSS У меня появилась идея интересного шуточного теста наушников и усилителя на тембральную достоверность и интонационную точность. Назвал его – “Тест на Акцент”, характерный для места рождения 🙂

  • Людмила Гурченко “Песни Военных Лет” (1982) – “Давай Закурим”. Людмила Марковна Гурченко родилась в г. Харьков Украинской ССР – Первый Уровень.
  • Patricia Kaas “Mon Mec a Moi” (1988) – Patricia Kaas родилась в г. Forbach (Lothringen) – Второй Уровень.
  • Людмила Барыкина “Смятение” (Д.Тухманов “По волне моей памяти” 1976). Людмила Тадьевна Барыкина родилась в г. Бельцы Молдавской ССР. – Третий Уровень.

И еще один Woo Audio WA5. “Теперь – горбатый!” – То есть LE.

Примерно с год назад ко мне обратился замечательный Британский аудиофил Daniel N с предложением переделки его усилителя Woo Audio WA5-LE. Как я выяснил позже, Daniel прочел статью на моем сайте и решил попробовать сделать что-то подобное со своим усилителем. Собственно, претензии были очень знакомы – “Тусклый, тембрально невыразительный, плоский и как бы “зажатый” звук.. С одной стороны – в звучании все вроде как “на месте”, с другой стороны – совершенно очевидно, что “что-то тут не то”. 🙂

Я согласился на переделку, предупредив, что “быстро” скорее всего не получится и что основная проблема переделки – это доставка ~ 30 кГ из Англии в Россию и обратно. В Россию груз ехал больше месяца и конечно без “приключений” с доставкой не обошлось, но – тем или иным способом 🙂 – к середине лета 2019 года усилитель оказался у меня.

В процессе “вскрытия и анализа”, помимо упомянутых мной в предыдущих статьях особенностей схемотехники двухкаскадного драйвера вдруг выяснилась весьма необычная схемотехническая неожиданность – в этом варианте усилителя выходной трансформатор включен в катодную цепь выходной лампы (300В)… “Тадам!“. Да, друзья мои – высоколинейный прямонакальный “легендарный” звуковой триод в этом усилителе “работает” в качестве обычного такого каскада с трансформаторной катодной нагрузкой, что-то вроде катодного повторителя напряжения. (Ха! Как тебе такое, Илон Маск? 🙂 ) И (печально) – “…Это многое объясняет…” Но – с технической точки зрения я понимаю, почему конструктором Woo Audio было выбрано такое схемотехническое решение, но не понимаю – зачем – это при их-то возможностях изготовить практически любой требуемый выходной трансформатор при весьма гибком бюджете. Вместе с усилителем Daniel прислал на замену пару отличных выходных трансформаторов Tango (ISO). Катодный повторитель и трансформаторы Tango… Это не наш метод. Переделка такой конструкции – неизбежность.

Было оговорено следующее:

  • При переделке использовать только специализированные комплектующие высокого уровня качества.
  • Драйвер выполнить по схеме аналогичной схеме Reichert, но предусмотреть возможность установки не только 6SN7, но и других подобных ламп.
  • Добавить в усилитель выходы для подключения акустики.
  • Предусмотреть возможность регулировки (переключения) напряжения на выходе выпрямителя анодного напряжения
  • Предусмотреть возможность регулировки и переключения напряжения накала выходных ламп.
  • Предусмотреть возможность коммутации анодной нагрузки лампы выходного каскада.

Предполагалось, что в качестве выходных ламп в усилитель можно будет устанавливать не только 300В, но и 2A3, AD1, PX4, а в качестве драйверных – ECC32, ECC40 и т.п.

Краткий анализ ВАХ предполагаемых к применению выходных ламп показал, что логично в выходном каскаде применить комбинированное смещение. То есть “автоматическая” часть напряжения смещения выделяется на катодном резисторе, а “фиксированная” – дополнительно подается в виде отрицательного напряжения смещения на сетку лампы.

Для различных выходных ламп и предполагаемых режимов их работы напряжения автоматического смещения и номиналы катодных резисторов должны быть такие:

  • 2A3/6A3/AD1 : Ua = 250V  Ug = -45V  Ia = 60mA  Rk = Ug/Ia = ~ 750 Ohm
  • 45: Ua = 250V  Ug = -50V  Ia = 36mA  Rk = ~ 1.4 К
  • 46: (T/C*)       : Ua = 250V  Ug = -33V  Ia(+Ic2) = 22mA  Rk = ~ 1.5 К 
  • VT52 (RAF): (T/C)   : Ua = 250V  Ug = -18V  Ia(+Ic2) = 36mA  Rk = ~ 500 Ohm
  • PX4               : Ua = 300V  Ug = -45V  Ia = 50mA  Rk = ~ 900 Ohm 
  • 300B(Low)     : Ua = 300V  Ug = -61V  Ia = 60mA  Rk = ~ 1 К 
  • 300B(High)    : Ua = 400V  Ug = -75V  Ia = 80mA  Rk = ~ 950 Ohm

T/C* – Triode Connected

Исходя из приведенных цифр мне показалось логичным выбрать номинал катодного резистора автосмещения Rk= 500 Ohm. Таким образом, получается что на катодном резисторе автосмещения Rk и на сопротивлении постоянному току первичной обмотки выходного трансформатора Rt = 120 Ohm для различных выходных ламп падение напряжения будет таким:

  • 2A3/6A3/AD1 : Ia* Rk + Ia*Rt  = 30V + 7.2V = 37.2V и понадобится добавочное отрицательное напряжение на сетке Ug = -(45-30) = -15V
  • 45                 : = 18V + 4.3V = 22.3V and Ug = -(50-18) = -32V
  • 46: (T/C)       : = 11V + 2.6V = 13.6V and Ug = -(33-11) = -22V
  • VT52 (RAF): (T/C)   : = 18V + 4.3V = 22.3V and Ug = -(18-18) = -0V
  • PX4               : = 25V + 6V = 31V and Ug = -(45-25) = -20V
  • 300B(Low)     : = 30V + 7.2V = 37.2V and Ug = -(61-30) = -31V
  • 300B(High)    : = 40V + 9.6V = 49.6V and Ug = -(75-40) = -35V

Добавочное отрицательное напряжение на сетке получается в пределах от 0V до -35V, то есть предел регулирования в -50V будет вполне достаточен. Падение напряжения на Rt необходимо учесть при расчете рабочей точки.

Для выходных ламп с рабочим напряжением на аноде = 250V (2A3, 45, 46, VT52), напряжение источника питания должно быть в пределах (250+13.6)…(250+37.2)  = ~264…288V DC. Для лампы PX4 и “низковольтного” режима 300B напряжение источника питания должно быть в пределах (300+31)….(300+37.2) = ~ 330…340V. Для “высоковольтного” режима 300B напряжение источника питания должно быть 400+49.6 =~ 450V.

Так же следует учесть падение напряжения на сопротивлении вторички силового трансформатора и на дросселях фильтра питания и на кенотроне. Это еще примерно ~ 20+25+5 = ~50V. Я посчитал, что для всех ламп с рабочим напряжением на аноде = 250V вполне достаточно выбрать одно напряжение источника питания и после выпрямителя (без нагрузки) оно будет = 288V + 50V = ~338V DC, для ламп с рабочим напряжением 300V = 340V +50V = ~390V DC, для “высоковольтного” режима 300B = 450V +50V = 500V DC.

Таким образом, отводы на вторичке силового трансформатора источника питания анодного напряжения должны быть на 338/1.4 = 241V AC   390/1.4 = 278V AC  500/1.4 = 357V AC. То есть три отвода (250V,  300V , 350V) будет вполне достаточно. Так как анодное напряжение не стабилизировано, то в процессе установки режима оно будет немного “плавать” и поэтому регулировка тока покоя должна выполняться в два этапа.

Для драйверного каскада на лампах 6SN7, ECC40, ECC32 каскад с анодной нагрузкой Ra = 43…47K и катодным резистором автосмещения Rk = 1.3…1.5K сохраняет очень хорошую линейность в диапазоне напряжения питания от 250V до 500V, запас по амплитуде выходного напряжения при этом так же вполне приличный. Коэффициент усиления двухкаскадного драйвера будет ~ 100 …115. Для ламп BL63 и CV1102 с этими же номиналами резисторов рабочая точка остается “нормальной” в диапазоне напряжения источника питания от 250V до 350V.

Итоговая схема усилителя после переделки:

Рис 1 из 4 – Усилитель.
Драйвер – двухкаскадный, выполнен по схеме известной как схема Reichert. Анодная нагрузка выбрана в пределах ~ 40K, катодный резистор автосмещения = 1.5K. При напряжении источника питания = +250V ток покоя каскада = ~4mA и размах выходного напряжения (peak to peak) = ~ 160V.  При напряжении источника питания = +450V ток покоя каскада = ~ 8mA и размах выходного напряжения (peak-to-peak) =~ 260V. Так как итогового усиления двухкаскадного драйвера более, чем достаточно, я не стал шунтировать конденсатором катодный резистор первого каскада. Коэффициент усиления первого каскада = ~ 7, выходное сопротивление =~ 11K, коэффициент усиления второго каскада = ~ 14, выходное сопротивление =~ 5K. Итоговый коэффициент усиления драйвера =~100.  Конденсатор C1 (220pF*) – конструктивная необходимость 🙂 для предотвращения возможного “паразитного” ВЧ возбуждения драйвера на пиках входного сигнала. Его установка вызвана особенностями “продольного” монтажа сигнальных проводников в корпусе усилителя Woo Audio.
В выходном каскаде – я применил комбинированное смещение. Регулируемое отрицательное напряжение смещения может быть установлено в пределах – 2V ..- 60V. Ua1 Ua2 идут из одной точки, но индивидуальными проводами.

Рис 2,3 и 4 – Блок питания и Стабизизаторы напряжений накала. Всего в блоке питания я применил 4 трансформатора – один для источника анодного напряжения и напряжения смещения и три для источников питания накалов. Вторичная обмотка трансформатора источника анодного напряжения выполнена с тремя отводами – ~250V, ~300V и ~350V, расчетный ток нагрузки составляет примерно 330mA. Переключение отводов и замена типов кенотронов дает возможность изменения анодного напряжения в довольно широких пределах. Напряжение на выводах обмотки для источника напряжения смещения = ~ 50V

В блоке питания Woo Audio силовой трансформатор закрыт декоративным колпаком, а размеры трансформатора таковы, что он плотно занимает все место внутри. Нет никакой технологической возможности изготовить силовой трансформатор точно таких же габаритов и такой же мощности, но с добавочными отводами на симметричной (с центральным отводом) вторичной обмотке. Поэтому силовой трансформатор пришлось отдать в перемотку (Эдуард – Спасибо за отличную работу!) и выполнить вторичную обмотку без центрального отвода, но проводом несколько большего диаметра. Это улучшило как температурный режим, так и мощностные характеристики трансформатора. Я применил схему “гибридного” мостового выпрямителя – с двумя ПП диодами и двумя кенотронами. Диоды каждого из кенотронов соединены параллельно, фильтр выполнен по трехступенчатой схеме. Первая ступень – СRC, затем “Виртуальная Батарея” на полевом транзисторе – которая помимо фильтрации обеспечивает и плавное нарастание напряжения на выходе и два (по одному на каждый канал) LC фильтра. Накалы всех ламп питаются выпрямленным и стабилизированным напряжением. Выпрямители напряжений накала располагаются в Блоке Питания, стабилизаторы в Блоке Усилителя.

Распиновка выходного разъема блока питания :

  • Pin # 1 = + High Volage (Channel 1)
  • Pin # 2 = + High Volage (Channel 2)
  • Pins ## 3,4,5 = GND    
  • Pin # 6 = – Non regulated Filament 5V  (Channel 1)
  • Pin # 7 = +Non regulated Filament 5V  (Channel 1)
  • Pin # 8 = – Non regulated Filament 5V  (Channel 2)  
  • Pin # 9 = + Non regulated Filament 5V (Channel 2)  
  • Pin # 10 = – Bias   
  • Pin # 11 = – Non regulated Filament 6.3V
  • Pin # 12 = +Non regulated Filament 6.3V              

Напряжения на выходе стабилизаторов источников питания накальных цепей – регулируемые, предусмотрено переключение на одно из трех выходных напряжений = +2.5V, +4V, +5V, максимальный ток нагрузки каждого из напряжений примерно 3 A. Для того, чтобы снизить тепловыделение на микросхемах стабилизаторов, вторичные обмотки трансфоматорв источников питания накалов выходных ламп могут быть скоммутированы параллельно – это может быть актуально в случае применения 2A3 в качестве выходных ламп (напряжение накала 2.5V при токе 2…2.5A). В ходе проведения испытаний выяснилось, что толстый алюминиевый корпус усилителя – довольно эффективный теплоотвод и особой необходимости в коммутации вторичек накальных трансформаторов – нет. Примечание – емкость конденсаторов фильтра выпрямителей напряжения накала выходных ламп желательно увеличить до 15..22 000 uF. Схемы стабилизаторов напряжений накала особенностей не имеют, добавлены лишь переключатели и подстроечные резисторы.

Несколько фото:

Благодарности

  • Я хотел бы выразить огромную признательность Herb Reichert за его статью “Flesh and Blood. Reichert 300B” (“Sound Practices” Magazine, winter 94/95 issue), которая безусловно является одной из важнейших статей для понимания “характера” лампы 300B.
  • Так же выражаю благодарность заказчику этого проекта, увлеченному аудио энтузиасту – Daniel N. Спасибо за заказ, за доверие и за прекрасную возможность попрактиковаться в Английском 🙂
  • Моя особая признательность – Эдуарду (г.Артем) – за качественный силовой трансформатор.
  • Мое уважение – компании “Орбита-Сервис” за отличные тороидальные трансформаторы, выполненные в полном соответствии со спецификацией заказа 🙂

Апрель 2019…Май 2020 г.Владивосток

Еще одни грабли. Продукт известного происхождения.

В марте этого года в процессе настройки очередной акустической системы на 4xTB1772 для более точной отладки мне был прислан усилитель, в комплекте с которым предполагается дальнейшая эксплуатация акустики. Подход очень верный – поскольку в том, что усилители моей конструкции будут отлично звучать с акустикой моей конструкции – я не сомневаюсь. А вот насчет других – 100% гарантии я дать не могу. 🙂

По всей видимости усилитель был приобретен на avito. Вот фото с этой популярной торговой площадки, внешний вид изделия вполне узнаваем.

По звуку – в целом и общем он лучше, чем у многих транзисторных усилителей 🙂  Из очевидных недостатков – плоская и невыразительная, смазанная “сцена” на СЧ, довольно однообразный тональный баланс и фатально сглаженная, полусонная “динамика” – звук мне показался слишком “медленный” даже для женского джаза 🙂 Мой опыт говорит от том, что лампа 300В может (и должна) звучать гораздо интереснее.

Что-же – заглянем внутрь –

Схема конструкции –

Итак – усилитель – двухкаскадный, первый каскад на пентоде 6Ж52П в триодном включении, с резистивной анодной нагрузкой и катодным автосмещением. Напряжение смещения первого каскада = 1.2V, это значит, что максимальное входное напряжение ограничено на уровне ~ 1.2*0.7 = 0.84V RMS, при большем входном напряжении каскад начнет работать с сеточным током, что приведет к росту уровня искажений. Расчетный коэффициент усиления каскада ~ 65, что при входном напряжении 0.84V RMS позволит получить на выходе 0.84*65 = 54.6V RMS (~ 75V Peak), что в общем-то вполне достаточно для “раскачки” такой выходной лампы, как 300В. Измеренный коэффициент усиления реального каскада составил =68, максимальное выходное напряжение (без лампы второго каскада) = 74V RMS, что даже несколько лучше расчетных значений.
Второй каскад – на прямонакальном триоде 300В, с трансформаторной нагрузкой и фиксированным регулируемым смещением, что позволяет устанавливать и подстраивать ток рабочей точки каскада в желаемых пределах. Связь между каскадами – емкостная, номинал межкаскадного конденсатора = 0.33uF (конденсатор “бутерброд”, то есть составлен из двух конденсаторов разного типа). Номинал резистора утечки сетки лампы 300В выбран = 470кОм, что необычно много для каскада с фиксированным регулируемым смещением. На мой взгляд, такой номинал потенциально может привести к “саморазогреву” лампы на пиках сигнала при длительной эксплуатации усилителя и (или) при “старении” лампы выходного каскада. Номинал резистора утечки сетки можно было бы уменьшить, но для сохранения полосы и минимального фазового сдвига в области НЧ одновременно требуется увеличить номинал межкаскадного конденсатора – что, по всей видимости было сделать затруднительно по тем или иным причинам. Отрицательное напряжение смещение на сетке лампы 300В регулируется в пределах -62…-85V, что позволяет установить ток покоя каскада в дипазоне примерно от 30 до 80mA. При анодном напряжении = +350…+360V это хороший, “безопасный” режим работы 300В. Срок службы при работе лампы в таком режиме будет долгим, но, конечно выходная мощность каскада при этом будет меньше “ожидаемой”.
Выходной трансформатор усилителя имеет сопротивление  первичной обмотки постоянному току= 270 Ом, сопротивление постоянному току вторичной обмотки ~ 0.9 Ом, что несколько больше ожидаемого.  Для 300В было бы оптимально, чтобы сопротивление первичной обмотки выходного трансформатора не превышало бы 200 Ом, а вторичной обмотки ~ 0.5 Ом, это позволило бы получить лучший КПД каскада (выходная мощность была бы выше) и меньшее выходное сопротивление. Коэффициент трансформации выходного трансформатора = ~ 31, что при подключении на вторичную обмотку нагрузки сопротивлением 5 Ом дает расчетное значение Ra ~ 4.8 кОм. С учетом сопротивления первичной обмотки постоянному току можно считать Ra = ~ 5 кОм. Измеренное выходное сопротивление каскада при этом составляет ~ 2.4 Ом, максимальная выходная мощность ~ 4W.  Совершенно очевидно, что сопротивление постоянному току обмоток выходного трансформатора слишком велико.
Блок питания усилителя – трансформаторный, с выпрямителем анодного напряжения на кенотронах. Накальные цепи первого каскада питаются напряжением переменного тока, накальные цепи выходного каскада – выпрямленным напряжением постоянного тока. Помимо этого, у трансформатора есть дополнительные обмотки для питания выпрямителя напряжения смещения и выпрямителя для питания модулей дистанционного управления громкостью и модуля стрелочных индикаторов уровня. Все эти выпрямители выполнены по простой мостовой схеме с одним фильтрующим конденсатором, без дополнительных балластных/фильтрующих RC цепочек. Выпрямитель анодного напряжения выполнен по схеме с конденсатором на входе и LC фильтром. Напряжение питания первого каскада дополнительно фильтруется RC фильтром. Я не могу назвать вариант размещения всех служебных обмоток на одном трансформаторе – разумным. Для уменьшения взаимовлияния и взаимопроникновения помех от пиков зарядных токов мостовых выпрямителей было бы правильным разместить часть обмоток (например для питания накалов выходных ламп) на отдельном трансформаторе и применить дополнительные балластные/фильтрующие RC цепи хотя бы в выпрямителе источника питания накала ламп выходного каскада. На мой взгляд, величина помех и их проникновение между каналами были бы существенно (на 15…20dB) меньше при питании накалов ламп выходного каскада стабилизированным напряжением постоянного тока. Или, как самый простой, но хороший по “звуку” вариант – переменным напряжением с “центровкой” накала низкоомными подстроечными резисторами для минимизации помех. Ну и конечно – выбор конструктива силового трансформатора на броневом сердечнике ТС-250 – без экранирующих обмоток, без пропитки – как-то плохо сочетается со стремлением получить хороший звук. И таки да – расположение силового трансформатора на правом крае шасси и фильтрующих дросселей под ним, рядом с выходным трансформатором правого канала – совершенно не оптимально как в плане уменьшения уровня наводок и помех, так и в плане оптимального, симметричного монтажа стереоусилителя. И кстати – насчет примененных комплектующих – ну никак они не соответствуют “статусу” лампы 300В.

В ходе обсуждения с заказчиком было принято решение о некоторой доработке с сохранением всех функциональных особенностей и внешнего вида, но с полным пересмотром внутреннего содержимого. Усилитель на 300В должен звучать как полагается 🙂

Что сделано в ходе доработки:

  • В рамках возможностей корпуса 🙂 пересмотрена концепция монтажа – трассировка общего сделана шиной, изменено расположение фильтрующих конденсаторов и резисторов нагрузки первого каскада, фильтрующие емкости в питании первого каскада были разделены на две части – первая емкость рядом с дросселями фильтра, вторая – непосредственно рядом с каскадом.  Убраны многочисленные монтажные планки, таким образом число переходных соединений значительно уменьшилось.
  • Заменены почти все сигнальные и вспомогательные проводники (за исключением цепей накала), проводники в цепях накала были свиты более плотно.  Заменены проводники, подключающие в схему первичную и вторичную обмотки выходных трансформаторов. Накальные обмотки трансформатора питания для ламп драйверного каскада “отцентрованы” резисторами, средняя точка заземлена. Это существенно снизило уровень наводок и помех в накальных цепях.
  • Заменены все резисторы в фильтрующих и сигнальных цепях. Я применил Panasonic и Vishay Dale (NOS). Резисторы во вспомогательных цепях (индикация, комутация реле, ДУ) остались те же.
  • Заменены почти все конденсаторы в фильтре цепей питания, остался только первый конденсатор CLC фильтра выпрямителя и конденсаторы в фильтре в источника напряжения смещения. Я применил Panasonic и Jensen.
  • Межкаскадные полипропиленовые конденсаторы были заменены на “фольга+бумага+масло”, я применил “наши” К-40У9 (NOS) военной приемки.
  • Крепеж элементов был выполнен при помощи высокачественных клеевых площадок и хомутов, термоклей был полностью убран.
  • Схема была немного доработана – пересчитан и скорректирован режим работы первого каскада, пересчитаны входные цепи выходного каскада. Для улучшения термостабильности режима в выходной каскад добавлена цепь автоматического смещения. Доработаны цепи регулировки смещения – теперь регулировка происходит более плавно и в более широком диапазоне.


В результате – усилитель “запел” 🙂 Тембры стали естественно-привычные, звучание приобрело насыщенность, динамику и объем. Теперь уже слышно, что это усилитель на 300В. На мой взгляд – это максимально-минимальная 🙂 доработка конструкции – без замены ламп и трансформаторов, без доработки шасси.

Схема конструкции после доработки –

Собственно, новая схема не очень сильно отличается от старой. 🙂 Напряжения в скобках /+332V (например)/ – это напряжения под нагрузкой, то есть с установленными лампами выходного каскада и с током покоя = 80 mA на канал. Напряжения под нагрузкой зависят от типа и характеристик примененного кенотрона и могут отличаться от указанных на 20…30 Вольт.
Усилитель по-прежнему двухкаскадный, первый каскад на пентоде 6Ж52П в триодном включении, с резистивной анодной нагрузкой и катодным автосмещением. Я немного увеличил напряжение смещения первого каскада до +1.7… /+2.0V/, это значит, что максимальное входное напряжение увеличено до уровня ~ 1.7*0.7 = 1.2V RMS. Я так же увеличил сопротивление анодной нагрузки (до 11 кОм) и напряжение на аноде, теперь оно = +174…/+219V/. Это значит, что запас по максимальному выходному напряжению первого каскада стал больше, а линейность – лучше. Коэффициент усиления каскада ~ 67, что при входном напряжении 1.2V RMS позволяет получить на выходе 1.2*67 = 80V RMS (~ 113V Peak), что с большим запасом достаточно для “раскачки”  выходной лампы 300В. 
Второй каскад – на прямонакальном триоде 300В, с трансформаторной нагрузкой и с автоматическим регулируемым (комбинированным) смещением, что позволяет устанавливать и подстраивать ток рабочей точки каскада в желаемых пределах, сохраняя при этом стабильность рабочей точки лампы при возникновении сеточных токов при саморазогреве и (или) перегрузке.  Номинал резистора автосмещения = 100 Ом, он же используется как “контрольный” резистор, по падению напряжения на нем можно проконтролировать и установить ток покоя лампы выходного каскада. Контрольное напряжение в 1V соответствует 10 mA тока покоя, то есть при токе покоя = 80 mA напряжение на этом резисторе будет = +8V. Контрольные напряжения для каждого канала выведены на клеммы на задней панели усилителя.Связь между каскадами – емкостная, я применил конденсатор K40-У9 (фольга + бумага + масло). Номинал резистора утечки сетки лампы 300В был уменьшен до вполне безопасного значения  = 330 кОм. Отрицательное напряжение смещение на сетке лампы 300В регулируется в пределах примерно от  -40 до -80V, что позволяет установить ток покоя каскада в диапазоне примерно от 20 до 100 mA, рекомендовванный ток покоя = 75…80 mA При анодном напряжении = +340…+360V это по-прежнему хороший, “безопасный” режим работы 300В.
В блоке питания усилителя я заменил NoName конденсаторы фильтра питания на Panasonic и Jensen,  организовал и присоединил на общий “среднюю точку” напряжение питания накала ламп первого каскада. Это улучшило тембральный баланс и дало ощущение “динамики”, “подвижности” звука и уменьшило уровень проникновения помех из цепей накала.

Несколько фото –

Март-Апрель 2020 г. Владивосток

Upgrade акустики Pioneer CS-100

Примерно с пару месяцев назад меня пригласили на “смотрины” и небольшую прослушку очень интересной и пожалуй даже в чем-то уникальной акустики Pioneеr CS-100, экземпляр который был недавно привезен из Японии. По результатам прослушки комплект акустических систем был приобретен и у счастливого владельца возник закономерный вопрос – а можно ли что-либо улучшить в акустике, которой в общем-то уже примерно 40 лет? (Спойлер: Можно!)

Но для начала немного технических подробностей. Pioneer CS-100 – полноразмерная напольная трехполосная акустическая система, выпускавшаяся в Японии с 1969 до примерно начала 80-х годов. Даже на сегодняшний день характеристики системы выдающиеся –

  • Схема построения: 3 полосы, 4 динамика, акустическое оформление закрытый ящик (!), напольное размещение.
  • Динамики: НЧ: 38cm (PW-38F). СЧ: 16cm (PM-16B, 2 шт, соединены параллельно), ВЧ рупорный (PT-102F, алюминиевая диафрагма)
  • Номинальный Импеданс: 8 или 16 Ом, выпускались два варианта
  • Номинальный диапазон воспроизводимых частот: 20…20000Hz
  • Номинальное звуковое давление: 97dB/W(!)
  • Максимальная подводимая мощность: 60W (@16 Ом)
  • Габаритные размеры. 600(ш) х960(в) x445(г) мм
  • Вес: 63kg


Схема фильтров довольно интересна. Фильтры НЧ (L1C1) и ВЧ (C4L4) звеньев – очень похожи на “классический” Linkwitz-Riley второго порядка с частотами раздела 600 и 6000 Hz, отсутствие цепей компенсации импеданса перед НЧ и ВЧ динамиками вероятно подразумевает, что их АЧХ исключительно ровны и свободны от нежелательных резонансов. Фильтр СЧ звена – более оригинален и представляет собой комбинацию фильтра первого порядка (L2C2), нагруженного на цепь увеличения импеданса в некоторой полосе частот (L3C3) и дополненного цепью выравнивания входного импеданса фильтра (L6R6C5). Вероятно, разработчики таким образом уходили от необходимости применения конденсаторов большой емкости. Элементы L5R5 шунтируют акустику ниже некоторой (довольно низкой) частоты, отбирая и рассеивая часть мощности усилителя, ограничивая тем самым амплитуду смещения диффузора НЧ динамика. Поскольку акустика – закрытый ящик – то в самом общем случае такое решение позволяет уменьшить уровень искажений в диапазоне ниже резонансной частоты НЧ динамика в этом оформлении и защитить подвес динамика от черезмерного смещения диффузора на пиках суб-НЧ сигналов. Переключатели SW1, SW2 и набор постоянных резисторов R1R2 R3R4 образуют “традиционные” для того времени L-Pad аттеньюаторы СЧ и ВЧ динамиков. Коммутация L-Pad в реальном фильтре немного отличалась от приведенной на схеме.

Импеданс (ZЧХ) акустики выглядит так:

В общем, “идеально-ровным” импеданс назвать вряд ли можно. Действие вспомогательных цепей L5R5 и L6R6C5 вполне очевидно проявляется на Z-ЧХ.

Примерно через неделю эксплуатации и “прогрева” акустики было принято решение провести небольшой upgrade – во первых, убрать из корпусов старый пыльный, колючий и практически “полу-распавшийся” 🙂 акустический наполнитель, демпфировать корпуса АС Шумоff и слоем синтепона, заменить проводку и немного модернизировать фильтры – заменить старые провода и конденсаторы на более современные, убрать “лишнее“, переделать монтаж – но без пересчета номиналов и пересведения фильтров. Оригинальный “звуковой почерк“. характерный для этой акустики – должен быть сохранен.

Поскольку эта акустика эксплуатируется в “винилово-ламповом” комплекте аудиооборудования, где выходная мощность усилителя сравнительно невелика (~ 20W на канал) и уровень суб-НЧ естественно ограничивается выходными трансформаторами и межкаскадными конденсаторами – то элементы L5R5 из схемы фильтра можно исключить. Далее, поскольку усилитель имеет сравнительно низкое выходное сопротивление (~ 1 Ом) и хорошо демпфирует 16-Ом акустику, то и в элементах L6R6С5 нет никакой необходимости. Без этих элементов с одной стороны, несколько увеличится неравномерность Z-ЧХ, но с другой стороны я считаю, что не стоит устанавливать компоненты без очевидной необходимости – чем меньше компенсирующих и(или) фазосдвигающих цепей, тем меньше их влияние на звук. Учитывая идею построения СЧ фильтра и особенности взаимодействия элементов L2C2 L3C3 я оставил все необходимые “родные” катушки индуктивности. Затем, поскольку акустические свойства помещения, в котором установлена эта акустическая система – известны и предсказуемы, то и переключатели SW1 SW2 можно исключить, перекоммутировав R1R2 R3R4 в необходимом соотношении. Таким образом после переделки не только уменьшилось чисто “контактных групп”, но и трассировка соединений элементов фильтра получилась логичнее и гораздо проще.
Естественно, “демонтаж винтажа” всегда вызывает массу эмоций, требует особой аккуратности, практических навыков и терпения. И конечно, пару раз в минуты искренности и просветления я весьма прямо и непосредственно выражал свое мнение о способе монтажа “плотная многослойная скрутка и пропайка”, старинном оргалите, “присохших” и хрупких от времени винтиках, “задубевшем” клее и кристаллизовавшемся припое… Кошки Муся и Фрося, с интересом наблюдавшие за процессом, очень внимательно и терпеливо выслушивали мои экспрессивные комментарии. 🙂

Схема Фильтра после небольшой доработки очевидна и в ее публикации нет особой необходимости. Уточню лишь, что R1=10.5 Ом, R2=42 Ом, R3=5.8 Ом, R4=42 Ом.

Z-ЧХ:


АЧХ, снятая в реальном помещении. “Качающийся” микрофон UMIK-1, True RTA (1/24 Oct, сглаживание до 1/3 Oct). АЧХ правого канала для наглядности сдвинута вверх. Пики на ~ 30 и 60 Гц – влияние комнаты.

Несколько Фото:

И да, совсем забыл. Звучание акустических систем до и после переделки – “…Это Небо и Земля…”. “Земля“, это конечно “до” 🙂 При этом – в результате доработки оригинальный “звуковой почерк” системы не пострадал.

Февраль…Март 2019 г.Владивосток

Еще один upgrade, на этот раз в традициах осени 2020 года – “дистанционно” 🙂 – для Игоря из Солнечногорска. Фильтры были присланы мне, а Игорь тем временем занимался акустической обработкой корпусов и другими улучшениями.

Несколько Фото:

И да, “винтаж” и в этом случае проявил себя – один из регулирующих резисторов оказался с дефектом и схему фильтра пришлось немного доработать. Диапазон регулировки уровня на “ослабление” стал несколько уже. Так же пришлось изготовить более крепкие металлические крепежные планки для акустических разъемов.

Впечатления Игоря

“…Виктор, спасибо за работу.  Колонки запустил. Думал что улучшения будут, но не думал что настолько! Недельку прогрею, потом отпишусь об изменениях. Первое впечатление ~ восторг…”

“….Касательно акустики: Что самое важное, общий характер (звучания) не поменялся. Но во всём произошли изменения. В верхнем регистре появилось ещё больше деталей. Середина стала ещё более певучей, вокальные партии очень живые. Баса больше не стало (да и не надо), но он стал более хлёстким и собранным. Сцена не стала шире, но увеличилась локализация инструментов и артистов. В целом всё очень понравилось. Ещё раз большое спасибо за работу…”

Ноябрь 2020…Январь 2021 г.Владивосток