Заметки о проектировании АС. АЧХ. Румкоррекция.

Кажется очевидным то, что аудиофилы-самодельщики понимают, что без хороших акустических систем (АС) им не обойтись. Тем более удивительно, что до сих пор взгляды большинства из них на критерии качества АС  существенно различаются. И более того – до сих пор не ясно, какие методы проектирования АС приводят к гарантировано хорошим результатам.

Теория относительности” АЧХ

Даже небольшого опыта прослушивания достаточно, чтобы заметить  разницу между воспроизведением одной и той же музыки разными АС. При этом, если верить данным производителей, основной параметр – амплитудно-частотные характеристики (АЧХ) этих разных АС почти всегда близки к идеалу и очень похожи.

Поэтому многие самодельщики приходят к тому выводу, что проблема “ровной” АЧХ уже практически решена, а качество воспроизведения зависит только от конструкции и материалов динамиков, корпусов и разделительных фильтров.

Но действительно ли все в порядке с АЧХ? Независимые измерения не подтверждают оптимистических параметров, заявленных производителями. Каждая модель АС имеет реально свою “кривую” АЧХ, разительно отличающуюся от “аналогично- кривых” характеристик других АС и мой скромный опыт показывает, что это характерно для всех ценовых групп. Разница в звучании при воспроизведении одной и той же музыки разными АС – очевидна. Но при этом АЧХ от “производителей” всегда одинаково-ровные. 🙂

Удивительно, но эти “одинаково-ровные” АЧХ – в общем-то правдивы. Для рекламных проспектов измерения обычно производятся по методикам, обеспечивающим “правильный” вид характеристик. Например, можно провести измерения при повышенной скорости сканирования рабочего диапазона частот что усреднит и сгладит пики и провалы  АЧХ в процессе снятия характеристик.

Но гораздо интереснее другое – почему же одна “кривая” (по АЧХ) модель АС звучит хорошо, а другая вроде как более “ровная” – воспроизводит музыку гораздо хуже?

Получается, что даже независимые,”честные” 🙂 измерения хоть и позволяют представить реальную АЧХ акустики в реальной комнате, но не раскрывают ее связь с конкретными особенностями звучания.

Почему, обладая всем необходимым, разработчики не создают идеальных АС? Ведь по идее – “идеал”, эталон – только один! И вроде как очевидно, что все АС, близкие к эталону, должны звучать примерно одинаково (хорошо).

Некоторые проблемы метрологии и их влияние на конечный результат.

Я считаю, что основная проблема в том, что любой способ проведения измерений неизбежно дает целый комплекс разнообразных ошибок. Самые “вредные” ошибки – методические, то есть связанные с несовершенством самого метода измерений.

Существует ряд общепринятых методик измерения АЧХ. Одна из основных – настройка АС в заглушенной, безэховой камере.

При проведении таких измерений принципиально важны методические особенности. Например – где располагать микрофон относительно АС. Обычная рекомендация – на “акустической оси”, на расстоянии 1 метр от акустической системы. А где точно проходит эта “ось” в случае трехполосной АС? Вряд ли перед ВЧ динамиком. Тогда, видимо, правильнее разместить микрофон на “оси” СЧ динамика. А если сместить микрофон немного выше или ниже, то для одной и той же АС получим множество различных АЧХ. На какую из них ориентироваться? Почему-то в этом методе проведения измерений принято считать, что слушатель обязательно услышит “измеренную” АЧХ, то есть поместит ухо именно туда, где при измерении располагался микрофон 🙂

Но ведь – в обычном помещении на НЧ и “нижних” СЧ АС активно взаимодействуют с полом и потолком, влияние которых в безэховой камере отсутствует. Взаимодействие АС с помещением влияет на звучание принципиально – но его конкретные проявления настолько разнообразны, что даже не могут быть представлены посредством точной математической модели.

Более того, суммарная АЧХ стереопары существенно отличается от АЧХ одной АС, а общепринятые методики настройки АС не учитывают этого обстоятельства. Например – при стереовоспроизведении голоса вокалистов обычно локализуются в центре звуковой сцены, то есть воспроизводятся обеими АС стереопары. Я считаю очевидным и методически верным то, что даже для настройки уровня и тем более для получения разборчивой и “ровной” передачи голосового диапазона необходимо контролировать итоговую АЧХ обеих АС.

Есть и другие, вроде бы логичные и методически адекватные методы – например настройка АЧХ и ФЧХ по импульсным сигналам. Но и при этом – работая казалось бы по одинаковым алгоритмам, специалисты почему-то получают разные звуковые результаты. 

Даже учитывая только эти “нестыковки” можно сделать вполне уверенные выводы:

  • Во-первых, методика проведения акустических измерений – “волюнтаристична” – то есть произвольно не точна. При упомянутых мной методических допусках даже  “индивидуально-тонально-ровные АС” в обычном акустически неподготовленном помещении всегда дадут неровную итоговую АЧХ.
  • Во-вторых – получается совершенно очивидно, что результат работы зависит не только от метода измерений, но и от личного опыта конструктора АС. Мне известно множество превосходных АС, разработанных “традиционными” способами и во всех этих случаях общее было то, что разработчики этих АС были (и есть 🙂 ) выдающиеся профессионалы, любящие музыку и обладающие развитым музыкальным вкусом.

Примечание по поводу румкоррекции

Действительно высококачественное звуковоспроизведение в произвольном акустически неподготовленном помещении требует или подготовки помещения – то есть коррекции архитектурных особенностей и проведения акустической обработки соответствующими материалами и (или) обязательного наличия в составе звуковоспроизводящей аппаратуры некоторого модуля аппаратно-программной интерактивной румкоррекции. На всякий случай уточню – именно интерактивной румкоррекции.

Сейчас широко применяется адаптивная румкоррекция – то есть звуковоспроизводящая система оснащается небольшим измерительным комплексом, который обычно состоит из микрофона и сигнального процессора. На этапе калибровки системы микрофон размещается на месте слушателя и (иногда) поочередно в различных местах комнаты, сигнальный процессор генерирует некие сложные сигналы и фиксирует “отклик” от микрофона. Таким образом присходит создание матрицы данных для необходимой коррекции АЧХ и ФЧХ системы в заданных частотных и амплитудных диапазонах и воспроизведение происходит с учетом калибровочных данных. При изменении акустической обстановки в комнате необходимо проведение перекалибровки.

Интерактивная румкоррекция предполагает постоянную подстройку системы под имеющиеся акустические условия. В идеале – изменение акустических условий в помещении не должно быть заметно для слушателя. Проще говоря, если в процессе прослушивания музыки в комнату кто-то занес например шкаф или вынес из нее кресло – то слушатель может заметить изменение обстановки, но не должен заметить изменений в звучании системы 🙂

Октябрь 2022 г.Владивосток

Upgrade акустики KEF Reference Model Four

Уже довольно долго во Владивостоке живет Виталий – увлеченный творческий энтузиаст-аудиофил, с “правильными” руками и трезвым рассудком.

Виталий имеет богатый опыт в изготовлении кабелей, сборке и ремонте МС трансформаторов, проигрывателей винила, “рекаппинге” (recapping) усилителей мощности и предусилителей.

Весной этого года он поставил цель – провести разумный и эффективный upgrade и (может быть) некоторую доработку имеющейся в его системе акустики KEF Reference Modеl Four, выпуска 90-х годов прошлого века.

Из очевидно слышимых причин уже назревшей необходимости upgrade – ощутимый недостаток ВЧ и гулкость, расплывчатость звучания на НЧ. При этом звучание системы в целом – объемное, ровное, увлекающее. Помещение для прослушивания акустически обработано верно.

Сдерживающие факторы – небольшой опыт в подобной работе с АС, отсутствие требуемой измерительной аппаратуры и навыков проведения измерений, необходимых в процессе отладки.

Решение – пригласить меня в качестве консультанта и метролога 🙂

Акустика KEF Reference Mоdel Four устроена довольно оригинально. Вот здесь можно почитать о ней более подробно. На первый взгляд – внешний вид вполне традиционно – обычен:

А вот внутренее устройство – весьма не тривиально:

Как видно – то, что снаружи выглядит как порт фазоинвертора – таковым не является, НЧ динамики расположены во внутреннем объеме в комбинированном оформлении – ЗЯ, bandpass и ФИ одновременно 🙂

Фото и схема “старых” разделительных фильтров

Принципиальная схема разделительных фильтров акустики KEF Reference Model Four

Видно, что фильтры довольно многополосны и весьма “ветвисты” 🙂 , что отчасти объясняется особенностями акустического оформления. Я не увидел необходимости в коррекции частотного диапазона полос фильтров, пересчете номиналов элементов и последующей “пересшивке” полос. Тут разработчики потрудились весьма искусно и вмешиваться в результат их труда нет никакого смысла.

Было принято решение ограничиться (всего лишь) следующим

  • Заменить все конденсаторы и резисторы и пересобрать фильтры навесным монтажом. Убрать фильтры из внутреннего объема акустики и разместить их в во внешних коробах, которые будут крепиться к задним стенкам акустических систем.
  • Заменить контактные клеммы – терминалы.
  • Заменить всю внутренюю проводку.
  • Задемпфировать и акустически обработать внутрение поверхности корпусов акустических систем и корзины динамиков.

Что и было сделано Виталием 🙂

Собраны новые фильтры, для них изготовлены и закреплены на задних стенках внешние короба, заменена вся внутреняя проводка

Сделана механическая и акустическая доработка корпусов, корзины динамиков оклеены акустическим войлоком. Вырезы для крепления клеммных колодок на задних стенках корпусов были аккуратно закрыты фанерными вставками, внутренние поверхности корпусов задемфированы Шумоff, герметиком и акустическим войлоком. Свободный объем коробов, в которые установлены “новые” фильтры – заполнен демпферным материалом. Установлены новые высококачественные медные клеммы-терминалы.

Доработка в высшей степени благотворно сказалась на звучании акустики. Края дипазона слышимо расширились и особенно это стало заметно в ВЧ диапазоне. СубНЧ и НЧ “подсобрались”, стали более динамичными, четкими и разнообразно-детальными. СЧ область, голосовой диапазон стал более объемен, выразителен и “многослоен”. ВЧ – как бы “заново проявились”, их уровень стал ровно таким, сколько нужно – не больше и не меньше. Доработка полностью оправдала себя, акустика и система в целом вышли на принципиально более высокий уровень.

Зависимость импеданса акустики от частоты.

График зависимости импеданса акустики KEF Reference Model 4 от частоты. Левый и Правый каналы.

АЧХ акустики, снятая в ближнем поле в реальной комнате для прослушивания.

АЧХ акустики KEF Reference Model 4. Сглаживание 1/3 октавы. Ближнее поле, комната для прослушивания.

Июнь…Сентябрь 2022 г. Владивосток