“Le Monstre” Jean Hiraga и LCD

Monster Zen V1

Случилось так, что один замечательный человек, профессиональный строитель высочайшего класса и очень талантливый рассказчик –   приобрел наушники LCD-3 и, естественно обратился ко мне за усилителем для них 🙂  Заказчик – меломан со стажем, но при нашей с ним общности вкусов его музыкальное восприятие несколько не совпадает с моим. В подаче музыки ему в первую очередь необходимы напор и “динамика” – без этого суть музыкального произведения от него как бы “ускользает”, кажется неполной. Спокойствие и неяркая философская многослойность Zen ему не подошли….Задача непростая, но – почему бы и нет, можно попробовать.

При обдумывании конструкции я принял решение сделать двухтактный усилитель с выходным каскадом в классе А, с максимально широкой полосой в области НЧ и, желательно – ВЧ  – при минимальном количестве усилительных элементов. Это потенциально должно убрать факторы, сдерживающие так называемые “напор” и динамику при сохранении хорошего музыкального разрешения . Естественно, я совсем не первый, кто задумался над подобной конструкцией – поэтому  за основу был взят замечательный усилитель “Le Monstre”, спроектированный известным разработчиком Jean Hiraga в 1982 году. Его статью см в разделе “Литература”.

Схема усилителя Jean Hiraga  “Le Monstre” :Hiraga-Monstre-Monster-Class-A-amplifier-schematic

Как видно, усилитель состоит из двух симметрично-комплиментарных плеч, каждое из которых по сути представляет собой по однотактному усилителю в классе А, работающих на общую нагрузку. Усилитель не имеет разделительных конденсаторов на входе, выходе и в цепи ООС  и фактически является усилителем постоянного тока. В области ВЧ полоса пропускания ограничивается только частотными свойствами примененных транзисторов.

К сожалению транзисторы, которые применил Jean Hiraga в оригинальной конструкции, сейчас уже не выпускаются. Более-менее подходящая замена такая ==>>  2SK170 = 2SK246, 2SJ74 =2SJ103, 2SC1775, 2SD756 = BC550  , 2SA872, 2SB716 = BC560 , 2SD844= TIP3055  2SB754 = TIP2955.

“Старые” и “новые” полевые транзисторы довольно серьезно различаются по параметрам, поэтому режимы работы схемы были пересчитаны заново.

О полевых транзисторах.

Вот справочные листы на комплиментарную пару  полевых транзисторов 2SK246 (datasheet_sk246) и 2SJ103 (datasheet_2SJ103). Обратите внимание на то, что эти транзисторы разделяются на группы (GR, BL,V) по параметру Idss. Так же нужно пристально взглянуть на график Id-Vds. Напрашивается три очевидных вывода – во первых,  “комплиментарность” характеристик SK246 и 2SJ103 таки довольно приблизительна, во вторых – линейности их характеристик существенно различаются и, в третьих – для создания хотя бы приблизительно симметричной двухтактной схемы транзисторы предварительно следует отобрать как минимум по параметру Idss.

После закупки по 10 шт 2SK246GR и 2SJ103GR мне удалось отобрать четыре пары 2SK246GR  и две (!) шт  2SJ103GR c Idss = 3.9…4mA. В моем случае 2SJ103 имели очень большой разброс. Исходя из этих данных режим работы первого каскада выбран следующим образом – ток покоя = ~ 0.5*Idss, при этом наиболее линейная область получается при напряжении смещения примерно 0.4…0.5V. (При выборе рабочей точки график Id-Vds следует “масштабировать” по оси Id исходя из измеренных значений Idss)

Схема Усилителя (V1) Hiraga_Headphone_new

Схема довольно проста. В каждом плече – каскод на входе  и составной транзистор по схеме Шиклаи (Sziklai) на выходе. Про каскодную схему на входе (почему и как) хорошо написано в оригинальной статье Jean Hiraga. Совершенно очевидно, что для минимума четных гармоник необходимо, чтобы усиление плеч было максимально близким, поэтому отбор транзисторов по характеристикам крайне желателен.

Блок питания – двухполярный нестабилизированный. О влиянии на звук транзисторного усилителя стабилизации напряжения источника питания я уже упоминал ранее – см. Усилитель Zen V. Версия 10.12  Диоды выпрямительного моста зашунтированы конденсаторами, фильтр построен по многозвенной C-R-С схеме. Трансформатор питания – тороидальный мощностью 200VA, с межобмоточным и внешним ленточным экранами.

Наладка усилителя проходит в два этапа. На первом этапе выходной каскад отключается и проводится предварительная настройка входного каскада – подстройкой резистора R5 добиваются одинакового падения напряжения на резисторах R3 и R4.  Затем нужно подать на вход усилителя синусоидальный сигнал амплитудой 0.2…0.3V RMS и проконтролировать форму сигнала на коллекторах T3 и T5.  Следует помнить, что выходной каскад на биполярных транзисторах управляется током, поэтому не стоит обращать особого внимания на сравнительно небольшое выходное напряжение и усиление первого каскада.

На втором этапе подключается выходной каскад, ток покоя контролируется падением напряжения на резисторах R12 и R13. Желаемый ток покоя устанавливается подбором резисторов R3  R4 (при увеличении номинала ток возрастает). Для нагрузки сопротивлением от 25 Ом я рекомендую выбрать ток покоя ~>= 0.5А. “Ноль” на выходе подстраивается резистором R5. При нестабилизированном блоке питания вполне нормально, если напряжение на выходе будет “гулять” в пределах +-2..5mV, наушникам от этого никакого вреда не будет. На этом наладку усилителя можно считать завершенной. 🙂

Об обратной связи.

В этом усилителе петля общей ООС выполняет несколько функций. Во-первых, определяет коэффициент усиления по напряжению, во-вторых, уменьшает выходное сопротивление усилителя и уровень искажений и, в- третьих – поддерживает потенциал выхода максимально близким к “0”. По логике перерасчета, если сопротивление в цепи истоков транзисторов первого каскада увеличилось, то следовало бы и увеличить величину резисторов в цепи ООС таким образом, чтобы соотношение R11 и  R10 было таким же, как в оригинальной схеме, это вроде сохранило бы степень влияния ООС на режим первого каскада по постоянному току в той же степени. Тестирование усилителя выявило следующую зависимость – увеличение номиналов резисторов цепи ООС с одной стороны, потенциально увеличивает проявления “дрейфа” нуля на выходе усилителя, с другой стороны, поскольку влияние ООС так же возрастает, то видимых изменений величины “дрейфа” не наблюдается. Поскольку в моем варианте усилителя выходные транзисторы работают в весьма щадящем тепловом режиме при токе покоя, далеком от  максимального паспортного значения – особого дрейфа нуля не наблюдается и при “старых” номиналах резисторов ООС. Я принял решение оставить их практически без изменений.

О надежности конструкции.

Как усилитель для наушников конструкция имеет очень хороший запас прочности, спокойно переносит замыкание выхода на “общий” и долговременную работу на короткозамкнутую нагрузку. В качестве “теста на выносливость” я примерно 30 минут “слушал” усилитель практически на полной мощности, закоротив его выход пинцетом. Пинцет нагрелся, а с усилителем ничего не случилось 🙂 При включении усилителя во время установления напряжения питания на выходе возможно проявление некоторых слышимых “звуковых артефактов”, но уровень их невелик и никакой опасности для нагрузки они не представляют. Поэтому применение дополнительных схем защиты и реле задержки подключения нагрузки в этой конструкции я считаю необязательным.

О Звуке

Звучит усилитель динамично, строго. В целом можно охарактеризовать звучание как очень чистое, ровное, с некоторым акцентом на передний план звуковой сцены – примерно в той же степени, как это наблюдается у ламповых усилителей на пентодах. НЧ – строгие, сдержанные и ооочень глубокие. Черезвычайно высокая детальность, хорошая сцена. В звуке безусловно присутствуют определенный “шарм”  и “порода” :).

Основные технические характеристики V1 –

  • Входное сопротивление = 47 кОм
  • Выходное сопротивление =< 1 Ом
  • Номинальная нагрузка = от 25 (и выше) Ом
  • Номинальное входное напряжение = 0.4V RMS
  • Максимальное выходное напряжение на нагрузке 1 кОм = 9V RMS
  • Максимальное выходное напряжение на нагрузке 20 Ом >= 7V RMS
  • Коэффициент усиления ~ 20
  • Полоса воспроизводимых частот, на нагрузке = 20 Ом при выходном напряжении = 0.9 от максимального = 0 Гц (постоянный ток) ….500 кГц.
  • Коэффициент гармоник на частоте 1 кГц на нагрузке 20 Ом при выходном напряжении = 0.9 от максимального <= 0.5%, в основном 2-я и 3-я гармоники. Уровень третьей гармоники относительно уровня второй <= -10 dB.
  • Время выхода на рабочий режим =< 30 min, это связано установлением теплового обмена в корпусе усилителя.

Выводы и итоги.

Схема Jean Hiraga пожалуй, является лучшим двухтактным аудио усилителем, собранным на дискретных компонентах.  К сожалению, комплиментарность полупроводниковых приборов – весьма приблизительна и дальнейшее развитие так называемых “идей” полупроводниковой схемотехники возможно только с применением операционных усилителей.  За очень редким исключением, линейность дискретных полупроводниковых приборов, как усилителей переменного напряжения без использования ООС – посредственная, принципиально хуже, чем у вакуумных ламп-  тем не менее весьма интересный результат может получиться в гибридных схемах, в каскадах усиления тока.

При наладке схем на транзисторах, у меня часто возникает ощущение, что современная полупроводниковая схемотехника – продукт враждебного инопланетного разума, чуждый истинной природе человека планеты Земля. Тем не менее, я таки сделал один экземпляр “Monster Zen” в качестве “запасного-транзисторного” домашнего усилителя мощности. После завершения этой конструкции мне пришло отчетливое понимание, того что с транзисторами ТОЧНО пора завязывать, то есть придумать что-то лучше, чем Jean Hiraga – я вряд ли смогу 🙂

И еще один вариант, с выходным каскадом на полевых транзисторах:

Апрель 2014                                                                                    г. Владивосток

PS  За прошедший год мне удалось отыскать некоторое количество оригинальных комплектов транзисторов. На них были сделаны два замечательных варианта усилителя –

1. Zen AKG (с увеличенной выходной мощностью и умощненным блоком питания, что позволило усилителю вполне уверенно “раскрыть” такие трудные наушники, как AKG K1000)

2. Zen Monster Balance – полностью балансная конструкция, четыре идентичных усилителя в одном корпусе, счетверенный ступенчатый регулятор уровня на прецезионных резисторах, умощненный блок питания) –

На сегодняшний день (25.09.2018) опыт сборки, наладки и прослушивания различных вариантов усилителя Zen Monster (схема была немного модифицирована до V3) с широким “ассортиментом” наушников позволяет мне со всей уверенностью заявить, что эта конструкция, пожалуй – один из самых лучших (если не самый лучший) полупроводниковый усилитель для изодинамики.  А по эффективности и оптимальности схемотехнического решения – ему нет равных. И это не реклама, а всего лишь малая часть моего глубочайшего уважения к автору этой конструкции – талантливому инженеру Jean Hiraga.

Двухтактный усилитель для наушников STAX. Версия на октальных лампах.

За последние пару лет ко мне часто обращаются с просьбой сделать усилитель, который бы “раскрыл” 🙂 все возможности электростатических наушников. Естественно, я часто задавал себе вопрос – а почему же “родные” усилители STAX, по мнению слушателей – не “раскрывают” возможности их же собственных наушников? На мой взгляд, помимо известных производственно – технических – финансовых трудностей компания STAX в определенном смысле стала жертвой своей же рекламы. Электростатические наушники всегда позиционировались ей как единственные, имеющие черезвычайно малый уровень искажений и самую высокую “верность” воспроизведения. Естественно, и усилители для них разрабатывались с соответствующими “модными” параметрами – минимальным уровнем гармоник, широким диапазоном частот и т.п.  По всей видимости, определенные ограничения инженерно- производственной базы и необходимость вписаться в заданный бюджет + приверженность к концепции “погони за цифрами” = не позволили компании STAX довести серию своих усилителей до адекватного аудиофильского уровня. На мой взгляд, самой интересной в звуковом смысле является серия SRM-006t. Но изделия даже этой серии, хоть и отличается весьма пластичным и тонально ровным звучанием – явно не обладают сколь-нибудь приличной динамикой и разрешающей способностью.  Поэтому тот, кто хотя бы один раз послушал DIY усилитель на лампах для электростатических наушников – к “фирменным” изделиям STAX уже никогда не вернется…

Этот усилитель разрабатывался и испытывался в двух вариантах — с тетродным включением ламп выходного каскада + общая ООС и с триодным включением ламп выходного каскада, без общей ООС. Подробности и впечатления о прослушивании этих двух вариантов я приведу чуть позже, в комментариях.

1. Схема усилителя.

Принципиальная схема усилителя  — STAX_PP_Octal_002 и его блока питания — STAX_PP_Octal_003   Для любопытствующих (….“Виктор, а как вы разрабатываете схемы?”…) –  я отсканировал лист из рабочей тетради с заметками, сделанными по ходу отладки — STAX_PP_Octal_005.

Каждый из двух каналов собран по двухтактной схеме, на двойных триодах (драйверный каскад), и на лучевых тетродах средней мощности в триодном или тетродном включении (выходной каскад).

Схема варианта усилителя с тетродным включением выходных ламп, режимы которого сформированы и стабилизированы посредством введения ООС — STAX_PP_Octal_004

Для наглядности на схемах показан только один канал.

Первый (входной и фазоинверторный) каскад –  комбинация фазоинвертора на специализированном трансформаторе Jensen JT-11P4 и двух усилительных каскадов на триодах по схеме с общим катодом и резистивной анодной нагрузкой. В качестве лампы первого каскада применен двойной триод 6SN7GT, особенностью которого является отличная линейность при широком диапазоне напряжений на аноде. Режим работы первого каскада – ток покоя каждого плеча = 5.5…6mA, напряжение на анодах = + 120…+125V.  Напряжение смещения = -2.8…-3.1V.  Лампы для первого каскада должны быть отобраны по идентичности “половинок”. Коэффициент передачи трансформаторного фазоинвертора = 0.7 (для каждого из “плеч”), коэффициент усиления первого каскада =~15. Для полной «раскачки» выходных ламп необходимо напряжение на их сетках примерно 14…15V rms, таким образом чувствительность усилителя составляет примерно 2.0V rms.

В “тетродном” варианте схемы каждое усилительное плечо охвачено общей ООС, глубина которой определяется выходным сопротивлением первого каскада и номиналом резисторов R15, R16**. Номинал этих резисторов подбирается по минимуму и “правильности” спектра искажений и по идентичности коэффициента усиления  каждого из плеч усилителя. Усилитель охвачен петлей общей ООС, уровень которой определяет его итоговую чувствительность и выходное сопротивление. При номиналах, указанных на схеме,  чувствительность усилителя составляет примерно 1.0V rms.

В “тетродном” варианте в качестве лампы первого каскада возможно применить двойной триод 6SL7GT, особенностью которого является хорошая линейность при довольно высоком коэффициенте усиления (u =70). Режим работы первого каскада в этом случае – ток покоя каждого плеча = 1.0…1.2 mA, напряжение на анодах = + 170…+190V.  Напряжение смещения = -1.8…-2.0V.  Номиналы резисторов в этом случае — R6,R7 = 180K, R8,R9 = 1.8K, R15,R16** = 470K, R11,R12 = 470K. Лампы для первого каскада должны быть отобраны по идентичности “половинок”. Коэффициент усиления этого варианта первого каскада =~35..40.

Второй (выходной) каскад усилителя собран по двухтактной схеме, с раздельным автоматическим смещением выходных ламп. Связь между каскадами – емкостная. Смещение задается резисторами R17, R18 в катодах выходных ламп. По переменному току эти резисторы зашунтированы конденсаторами С6, С7. Ток покоя в “триодном” варианте выходного каскада составляет 30…32 mA для каждой лампы, выходной каскад работает в классе “A”. Нагрузкой является выходной трансформатор, с симметричной вторичной обмоткой со средней точкой. В качестве выходных трансформаторов применены изделия от компании Lundahl модель LL1660S/PP, включенные по схеме PP/PP c  коэффициентом передачи  (2.25+2.25):(2+2). Режим работы выходных ламп выбран таким образом, чтобы на нагрузке обеспечивался максимально возможный размах выходного напряжения при минимуме нечетных гармоник. Так как четные гармоники в двухтактном каскаде в значительной степени компенсируются, то при подборе выходных ламп в близкие по параметрам пары это позволяет получить очень низкий общий уровень гармонических искажений усилителя и в большинстве случаев обойтись без введения общей ООС.

В тетродном варианте на вторые сетки выходных ламп подается стабилизированное напряжение = 250V, выходной каскад работает в классе AB. Для линеаризации выходного каскада необходимо применить ООС. Было принято решение не охватывать петлей ООС выходной трансформатор, а снимать ее сигнал с анодов выходных ламп. Глубина ООС регулируется резисторами R15,R16. При наладке усилителя этими резисторами первоначально устанавливается номинальная чувствительность усилителя, а затем  их номинал подбирается чуть более точно по уровню и спектру искажений на выходе усилителя.

В качестве ламп выходного каскада используются лучевые тетроды средней мощности 6V6G. Из-за  конструктивных особенностей электродной системы эти лампы имеют практически уникальные звуковые характеристики. Например  – 6V6_Output_01 (см уровень 3-й гармоники). Из более мощных ламп подобными характеристиками обладают лишь тетроды 807 и 829В и некоторые редкие немецкие тетроды:).

Блок питания усилителя особенностей не имеет. В качестве трансформатора питания и накала использован весьма качественный трансформатор Hаmmond серии 372. Накал питается напряжением переменного тока, для уменьшения уровня помех и наводок на накальные цепи, обмотка накала «поднята» над общим примерно на +30V при помощи делителя R25R26.

Анодное напряжение, необходимое для работы схемы, снимается со вторичной обмотки трансформатора питания и выпрямляется диодами. Выпрямленное напряжение (+365V) фильтруется с помощью стабилизатора- электронного фильтра на транзисторе VT1, он же обеспечивает плавное нарастание анодного напряжения при включении усилителя. Напряжение на выходе фильтра = +340V.  Напряжение BIAS (+580V), необходимое для работы наушников STAX, формируется с помощью выпрямителя- удвоителя напряжения на полупроводниковых диодах VD1VD2, простейшим стабилизатором на элементах R19ZD1…ZD3 и фильтром на элементах C9R19C10.

С предварительно подобранными по параметрам лампами 6V6G в выходном каскаде усилитель обеспечивает следующие характеристики –

  • Входное сопротивление = 10 кОм;
  • Выходное сопротивление, не более 2.2 кОм (триодный вариант без ООС) и не более 10 кОм (тетродный вариант с ООС);
  • Максимальное выходное напряжение (на каждом из балансных выходов) = 250V RMS (700V Peak-to-Peak) для “тетродного” варианта и 175V RMS (490V Peak-to-Peak) для “триодного” варианта;
  • Номинальное входное напряжение = 2V RMS;
  • Полоса воспроизводимых частот, при неравномерности +-1 dB и уровне выходного напряжения 100V RMS, на эквиваленте нагрузки сопротивлением 100 кОм, не хуже =  20Гц…22кГц;
  • Суммарный коэффициент гармоник на выходе усилителя, при уровне выходного напряжения 100VRMS = < 0.5% (Определяется точностью подбора по характеристикам ламп выходного каскада, при установке неподобранной пары ламп одного изготовителя и одной даты выпуска = < 2%);
  • Уровень шумов и помех на выходе усилителя, при минимальном положении регулятора громкости, измеренный на эквиваленте нагрузки сопротивлением 100 кОм = < -65dB;
  • Время выхода на «рабочий» режим после включения, <= 30 мин.

2. Звучание и Итог.

В тетродном варианте усилитель звучит боле динамично, экспрессивно. В триодном – более тонко, я бы сказал интеллигентно. Лично я предпочитаю триодный вариант – он прекрасно подходит для сосредоточенного, неторопливого прослушивания. С завершением этой конструкции “тему” электростатов для себя я считаю раскрытой полностью :).

И еще один вариант исполнения –

Октябрь  2013 года                                                                                     г. Владивосток

Внутренний мир самурая Yamаmoto

Несколько недель назад попал мне на “медосмотр” один замечательный человек…..- то есть, усилитель для наушников от известного и очень уважаемого мной японского мастера Yamаmoto.

Это был Yamаmoto HA-03. 

Конструкция представляет собой пентодный однокаскадный усилитель на лампе Siemens C3m, с трансформаторной нагрузкой. Выходной трансформатор имеет приведенное сопротивление 15 кОм, и отводы на вторичной обмотке 8 Ом и 50 Ом. Схема усилителя –Yamаmoto_HA_03_002

Как видно, конструкция вовсе не “в стиле ретро” а вполне даже продвинутая 🙂 Смещение организовано на стабилитроне, включенном цепь катода. Накал питается напряжением переменного тока. Режимы каскада – напряжение на аноде = +220 Вольт, напряжение на второй сетке + 212 Вольт, напряжение смещения (на катоде) = +7.6 Вольт.  Выпрямитель индивидуальный для каждого канала, в каждом канале отдельный выпрямитель для анодного напряжения и напряжения второй сетки. Фильтрация анодного напряжения организована через CRC фильтр 100мкФ-7.5кОм-100 мкФ, фильтрация напряжения на второй сетке организована при помощи стабилитронов, в качестве элемента, задающего их рабочий ток, применен интегральный источник тока IXYS.

Основные характеристики (реально измеренные):

  • Полоса воспроизводимых частот на полной мощности (Кг=5%)  на нагрузке 8 Ом = 20Гц…27 кГц, спад на краях диапазона составляет -3dB.
  • Максимальное выходное напряжение (Кг=5%) на нагрузке 6 Ом составпяет 1.3V RMS, соответственно выходная мощность =  0.28 Вт, на нагрузке 8 Ом будет несколько больше (примерно 0.6 Вт),
  • Выходное сопротивление = 520 Ом (!!!) Пентод все-таки. 🙂

Усилитель звучит легко и ясно, очень детально.  Немного фонит (входные
сигнальные проводники не экранированы). Заметен легкий микрофонный эффект. Звучание очень живое, увлекательное. Эта выдающаяся конструкция  безусловно, обладает своим характером и яркой, запоминающейся индивидуальностью. Без всякого сомнения – “Must Have” – для всякого увлеченного наушниками аудиофила.

 

Март 2013 г.                                                                                     г. Владивосток

Вариации Zen

За последнюю пару лет было собрано несколько модификаций усилителя Zen – Zen-V, Zen-LCD, Power Zen и даже Hybrid Zen 🙂 Я принял решение не посвящать отдельные статьи каждому из вариантов, а только коротко остановиться на их особенностях. Эти усилители можно разделить на две группы-

Первая, основой которой является усилитель Penultimate Zen от Nelson Pass и вторая – более или менее самостоятельная разработка – двухкаскадный усилитель без ООС, первым каскадом которого является усилитель напряжения (транзисторный или ламповый), а вторым – усилитель тока.

Основной усилитель из первой группы (Zen-V) был довольно подробно рассмотрен ранее. На сегодняшний день в схему внесено только одно изменение – убрана цепь подстройки тока покоя. Слабым местом этой схемы является сравнительно низкое входное сопротивление и узкая полоса в ВЧ области. От этих недостатков свободна схема Zen-LCD.  (Схема –Zen_LCD_002, Блок питания –Zen_LCD_003 )  За основу было взято аналогичное решение, предложенное Nelson Pass. Как видно, в усилитель добавлен входной каскад- повторитель и оба каскада охвачены петлей ООС по напряжению. Введение ООС позволило расширить полосу полной мощности в области ВЧ примерно до 100 кГц и снизило коэффициент гармоник примерно до 0.1%. Звучание усилителя приобрело “строгость и сдержанность”. Пожалуй можно сказать что духовно эта конструкция ближе к Конфуцианству, чем к Дзен-Буддизму 🙂 Эта версия является последней в первой группе.

Основа усилителя из второй группы- обычная схема “из учебника”.Zen_Power_002

Варианты этого усилителя отличаются только “архитектурой” первого каскада- “типовой” усилитель с резистивной нагрузкой (Схема –Zen_Power_004), каскодная схема (Схема- Zen_Power_005) или усилительный каскад на лампе, с трансформаторной или емкостной связью между каскадами (Схема с емкостной связью- Hybrid_Zen_001).

Каждая из “Вариаций Zen” имеет свой особый звук, лично мне больше нравится гибридная конструкция.

На фото – различные варианты оформления усилителей Zen.

Двухблочный Zen Hybrid (версия 2014 года):

Принципиальная схема, окончательный вариант может отличаться в несущественных деталях — Hybrid_Zen_PS_DR Hybrid_Zen_PS_OP

Одноблочный “мощный” (2x25W) Zen Hybrid (версия 08.2015) с выходным каскадом на биполярных транзисторах:

Теперь, по прошествии определенного времен – после сборки, настройки и прослушивания многочисленных “Вариаций Zen”  я, пожалуй, уже могу сделать предварительный вывод о характерных особенностях, достоинствах и недостатках звучания ламповых и транзисторных усилителей. Да, можно сделать универсальный транзисторный усилитель который звучит очень хорошо – пластично, музыкально и в тоже время ясно, динамично объемно и с черезвычайно высоким разрешением. Но – специализированный ламповый все равно звучит лучше :). Все-таки душа звука – в лампах. Хорошим “полукомпромиссным” решением является гибридный усилитель с архитектурой- усилитель напряжения + усилитель тока, без общей ООС. Ламповая и транзисторная “части” такого усилителя, по моему мнению, обязательно должны иметь раздельные источники питания.

Так же я должен заметить, что в последнее время из “Поднебесной” накатился  просто таки “девятый вал” весьма посредственных конструкций лаповых усилителей, фактически профанирующих идею и смысл лампового звука. Безусловно, любой из “транзисторников”  линейки Zen будет на две головы выше такого “лампового новодела”.

май 2012- май 2013 гг                                                                  г.Владивосток

Двухтактный усилитель для наушников STAX SR-007

Предварительно этот усилитель был “заявлен” на форуме doctorhead.ru (в теме “Схемотехника усилителей для электростатических наушников”). Здесь – полное описание конструкции.

1. Схема усилителя.

Принципиальная схема усилителя и его блока питания – STAX_Balanced_Triode_001.

Каждый из двух каналов собран по двухтакной схеме, на триодах со средним коэффициентом усиления (драйверный каскад), и на пентодах средней мощности в триодном включении (выходной каскад), без общей ООС. Прорабатывался вариант усилителя и с пентодным включением выходных ламп. Схема этого варианта приведена в конце статьи (*** будет добавлена чуть позже).

Для наглядности на схеме показан только один канал.

Первый (входной) каскад – балансный усилитель на двух триодах по схеме с общим катодом и резистивной анодной нагрузкой. В качестве ламп первого каскада применен двойной триод 6BZ7 (6BQ7), особенностью которого является хорошая линейность при сравнительно небольшом напряжении на аноде. Режим работы первого каскада – ток покоя каждого плеча 6.5…7 mA, напряжение на анодах + 140…+145V.  Напряжение смещения = -2.7…-3.1V.  Лампы для первого каскада должны быть отобраны по идентичности “половинок”.  Коэффициент усиления первого каскада =~15. Для полной «раскачки» выходных ламп необходимо напряжение на их сетках примерно 10…12V rms, таким образом чувствительность усилителя составляет примерно 0.7V rms.

В первом каскадt допустимо применение ламп 6BZ7, 6BQ7, 6DJ8, 6922, E88CC, ECC88, 6Н23П-ЕВ и даже 6Н1П-ЕВ (с некоторым снижением коэффициента усиления).

Второй (выходной) каскад усилителя собран по двухтактной схеме, с раздельным автоматическим смещением выходных ламп. Связь между каскадами – емкостная. Смещение задается резисторами R14, R15 в катодах выходных ламп. По переменному току эти резисторы зашунтированы конденсаторами С4, С5. Ток покоя составляет 27…29 mA для каждой лампы. Нагрузкой является выходной трансформатор, вторичная обмотка которого симметричная, со средней точкой. В качестве выходных трансформаторов применены изделия от компании Lundahl, модели LL1660S/PP, скоммутированные по схеме PP/PP c  коэффициентом передачи  (2.25+2.25):(2+2). Режим работы выходных ламп выбран таким образом, чтобы на нагрузке обеспечивался максимально возможный размах выходного напряжения при минимуме нечетных гармоник. Так как четные гармоники в двухтактном каскаде в значительной степени компенсируются, то при подборе выходных ламп в близкие по параметрам пары это позволяет получить очень низкий общий уровень гармонических искажений усилителя и обойтись без введения петли ООС.

В качестве ламп выходного каскада используются пентоды средней мощности 6GK6,  в триодном включении.  С некоторым ухудшением характеристик и с перепайкой цоколевки можно применить EL84, 6П14П-ЕВ.

Блок питания усилителя особенностей не имеет.

В качестве трансформатора питания и накала использован подходящий по парметрам весьма качественной трансформатор компании Hаmmond.

Накал питается напряжением переменного тока, для уменьшения уровня помех и наводок на накальные цепи, напряжение накала «поднято» над общим примерно на +80V при помощи делителя R12R13.

Анодное напряжение, необходимое для работы схемы, снимается со вторичной обмотки трансформатора питания и выпрямляется кенотроном. Выпрямленное напряжение (+415 V) фильтруется с помощью стабилизатора- электронного фильтра на транзисторе VT1, он же обеспечивает плавное нарастание анодного напряжения при включении усилителя. Напряжение на выходе фильтра = +385 V.  Напряжение BIAS (+580V), необходимое для работы телефонов STAX, формируется с помощью выпрямителя на полупроводниковых диодах VD2,VD3, простейшим стабилизатором на элементах R15ZD2…9,  и фильтром на элементах R16C13.

С предварительно подобранными лампами 6GK6 в выходном каскаде усилитель обеспечивает следующие характеристики –

  • Входное сопротивление = 49 кОм;
  • Выходное сопротивление, не более 2.4 кОм;
  • Максимальное выходное напряжение (на каждом из балансных выходов) = 185V RMS (518V Peak-to-Peak);
  • Номинальное входное напряжение = 700mV RMS;
  • Полоса воспроизводимых частот, при неравномерности +-1 dB и уровне выходного напряжения 100V RMS, на эквиваленте нагрузки сопротивлением 100 кОм = 20Гц…22кГц;
  • Общий коэффициент искажений на выходе усилителя, при уровне выходного напряжения 100VRMS = < 0.5% (Определяется точностью подбора по характеристикам ламп выходного каскада, при установке неподобранной пары ламп одного изготовителя и одной даты выпуска = < 2%);
  • Уровень шумов и помех на выходе усилителя, при минимальном положении регулятора громкости, измеренный на эквиваленте нагрузки сопротивлением 100 кОм = < -65dB;
  • Время выхода на «рабочий» режим после включения, <= 30 мин.

2. Благодарности

Выражаю огромную благодарность SharapOFF за возможность разработать и изготовить для него эту конструкцию, а так же за продуктивное обсуждение особенностей звуковоспроизведения. Выражаю надежду, что этот усилитель будет радовать его своим звучанием на протяжении многих лет.

Октябрь-Ноябрь  2012 года                                                               г. Владивосток

Woo Audio WA5 – взгляд снаружи и изнутри

Пару недель тому назад многоуважаемый и широко известный на doctorhead.ru форумчанин SharapOFF предоставил мне на прослушку усилитель Woo Audio WA5 300B.
Выглядит он так (Фото с сайта Woo Audio) — wa5-wholewa5-frontwa5-back

Комплектация усилителя была топовой – кенотроны Mesh Plate от Sophia Electric, 6SN7 NOS brown plate от Sylvania, тефлоновые панельки с цанговыми контактами, межкаскадные конденсаторы V-Cap, конденсаторы в блоке питания – Jensen, шунтирующие конденсаторы – BlackGate. По “легенде” продавца, этот усилитель был приобретен по случаю, как выставочный экземпляр.
Естественно, ожидания были – весьма волнительными и полный предвкушений, я установил усилитель в свою систему, включил и…
Но сначала о системе.
В качестве CD проигрывателя – Njoe Troeb Reference, межблочники – витая пара из серебряной моножилы в тефлоне + коннекторы Eichmann, наушники – в ассортименте от Sennheiser HD800 и Audeze LCD-3 до Beyer Dymnamics DT150 c custom абушурами и кабелем, купленные по случаю у знакомого на “той самой” студии Abbey Road.
Диски – в широчайшем ассортименте, все оригинальные.
Итак, поставил я свою любимую запись “Времена Года”, одел наушники, и – постигло меня сначала удивление, а потом и горькое разочарование. Звук – зажатый, плоский и какой-то … не ламповый… Выключив систему, я начал было суетливо проверять коммутацию, питание, на всякий случай протер контакты разъемов чистящей жидкостью. Включил снова – нет, лучше не стало. Плоский, зажатый звук – сцена вытянута справа налево, тембры бедные, виолончели (а может быть и скрипки) – фанерные… Звук – лишен эмоций, сухой, скучный и однообразный. А где же знаменитое, открытое и широкое звучание 6SN7 и 300В ? Уж я то точно знаю, как должен звучать усилитель на этих лампах….
Может Woo неисправен ? Заглядываю внутрь —

Еще несколько картинок – внутренности блока питания –

Как видно, выпрямительные кенотроны включены параллельно, накальные напряжения подаются на блок усилителя от отдельного трансформатора. Накал драйверных ламп выпрямлен и стабилизирован (12 Вольт), для формирования напряжения накала выходных ламп в блок усилителя с двух раздельных обмоток подается переменное напряжение 6 Вольт. Мощность накального трансформатора = 30 Вт.
Схема задержки подачи анодного напряжения выполнена на полупроводниковом транзисторном ключе, схеме таймера и реле, фильтрация производится дросселем и отличными электролитическими конденсаторами Jensen емкостью 200 мкФ. Очевидно, что выпрямлению и фильтрации анодного напряжения уделено особое внимание. Необходимость задержки подачи анодного напряжения вызвана не только защитой выходных ламп от броска напряжения при включении усилителя, но и защитой кенотронов от броска тока, возникающего при зарядке фильтрующих емкостей.

Усилитель, Примерная схемаWoo_Sch_Before

Некоторая загадка (?) – это блок переключателя – коммутатора нагрузки, на который заведены все видимые выводы выходного трансформатора, проводники с катодов и анодов выходных ламп, разъемы для подключения телефонов, разъемы для подключения динамиков.
Выглядит он так —

Transformer_Commutation_01

Совершенно ясно, что часть контактов этого переключателя задействована только как вспомогательные монтажные планки. Поскольку на переключатель подается высокое напряжение, его планки покрыты черной каучуковой краской и залиты термоклеем.
При дальнейшем разбирательстве выяснилось, что если бы Woo был без выхода на высоковольтную изодинамику и акустику, то никакой особой необходимости в этом весьма некачественном переключателе не было бы.
Обратите внимание на включение фильтрующих конденсаторов. Фактически, в блоке усилителя оба выходных каскада “питаются” от NoName конденсатора емкостью 10 мкФ. Все красивые емкости Jensen желтого цвета обеспечивают фильтрацию питания исключительно двух каскадов драйвера. На мой взгляд, это существенное упущение, поскольку фактически получается, что по плюсу питания выходные каскады левого и правого каналов объединены и через один проводник и два разъема заведены на “удаленный” фильтрующий конденсатор, расположенный в блоке питания.

Особый интерес представляют выходные трансформаторы —

Впечатлительных аудиолюбителей прошу не пугаться – трансформаторы хоть и выглядят несколько брутально, но вполне качественны. Вторичная обмотка имеет три вывода – общий, для низкоомной нагрузки и акустических систем и для высокоомной нагрузки. Приведенное сопротивление первичной обмотки при нагрузке 8 Ом составляет 2.5 кОм.

Комментарии по схеме драйвера – она напоминает известный усилитель от Sun Audio, на мой взгляд – не лучшее решение для раскачки 300В. Первый каскад работает с небольшим напряжением на аноде (90…100V), анодная нагрузка выбрана сравнительно высокой (62 кОм) ток покоя небольшой (3..3.5 мА). Если взглянуть на ВАХ 6SN7- то это не самый линейный участок для выбора рабочей точки, в зависимости от разброса характеристик ламп спектральный состав и уровень искажений на выходе каскада будет сильно меняться, то есть звук (“tHe sOUNd” :)) будет очень сильно зависеть от замены ламп. Возможно, в этом есть некоторая “фишка”.

Я бы заменил резистор в аноде на 27…33 кОм, в катоде установил бы 470…510 Ом. Напряжение на аноде осталось бы прежним, а ток покоя вырос бы до 5…5.5 мА, рабочая точка переместилась в менее “чувствительную” и более линейную область.
Второй каскад – из-за непосредственной связи с первым каскадом катод лампы второго каскада поднят над общим примерно на 105…108 Вольт. Это напряжение фактически растрачено впустую, поскольку каскад работает с “полезным” напряжением питания, равным разности между напряжением на катоде и напряжением источника питания.
Естественно, это ограничивает возможности каскада по раскачке выходной лампы.
Если уж делать для 300В двухкаскадный драйвер на триодах с малым усилением, то схема Рейчерта, на мой взгляд, более предпочтительна, несмотря на наличие дополнительного межкаскадного конденсатора. Его негативные свойства компенсируются эффективным использованием источника питания и максимальными, для каскада с резистивной нагрузкой, возможностями раскачки выходной лампы.
Но лично я, если есть возможность заменить лампу драйвера, предпочитаю применить один каскад усиления вместо двух.

После вскрытия и осмотра содержимого, естественно, были сделаны некоторые измерения.
При снятых лампах – Напряжение источника питания = 380 Вольт, напряжение накала на 300В = 4.8 Вольт (выпрямленное), напряжение накала на драйверных лампах 12 Вольт (выпрямленное), по 6 Вольт на лампу, накалы соединены последовательно.
Эти данные заставили меня несколько задуматься. Выходные лампы включены с автосмещением, конденсаторы источника питания имеют номинальное напряжение не ниже 450 Вольт. Опять же, заявленные технические характеристики – выходная мощность 8 Вт на канал… Я ожидал на выходе блока питания без нагрузки высокое напряжение не менее 420…440 Вольт.
Устанавливаю выходные лампы, включаю. Напряжение на выходе блока питания = 340(!) Вольт, напряжение накала 300В = 4.3 (!) Вольт, напряжение смещения на катоде = 51 Вольт. Ток, потребляемый усилителем = 140 мA.
Измеряю напряжение сети – все в порядке, обычные 230 Вольт. Измеряю переменное напряжение накала, поступающее с блока питания – все в порядке, 6 Вольт, никакого проседания.
Устанавливаю другой комплект выходных ламп (мало ли что), измеряю напряжение – те же 4.3 Вольт. То есть проблема (или может быть это еще одна “фишка” ?) в выпрямителе накала, а именно в номинале балластных резисторов (0.22+0.22 Ом).

Inside_Before_06

Вынимаю кенотроны из панелек, измеряю напряжение на вторичке сетевого трансформатора. 696 (то есть 348+348) вольт без нагрузки. В принципе, с выпрямителем на высокоомных кенотронах (Ri~180 Ом) и CLC фильтром, напряжение на выходе такого блока питания при номинальной нагрузке должно быть примерно 340…350 Вольт. Все примерно соответствует. (Еще одна “фишка” ?)

После обнаружения таких “фишек” в конструкции я решил спокойно обдумать, что же с этим всем делать дальше. Самый экстремальный план – замену накального трансформатора и трансформатора питания – пока решил не рассматривать. Менее экстремальный вариант – заменить выходные лампы 300B на 2A3 сначала показался мне весьма привлекательным. Дело в том, что для выходного каскада на одноанодных 2A3-36 или 2А3-40 с автосмещением имеющееся напряжение питания – как раз самое “то, что нужно”. Если заменить диоды выпрямителя накала на Шоттки, то появляется достаточный запас для установки регулятора-стабилизатора напряжения накала. Это, кстати, существенно понизит уровень помех, что весьма полезно для усилителя для наушников – и регулировка “центровки” накала ламп выходного каскада в этом случае будет не нужна.
Весьма интересным показался вариант с переводом выходного каскада на фиксированное смещение, и в конструкции для себя я бы остановился именно на нем. В блоке питания вполне достаточно места для установки небольшого дополнительного трансформатора и выпрямителя напряжения смещения. Но – поскольку владелец этого усилителя не хотел бы периодически отвлекаться на подстройку и контроль тока выходных ламп, этот вариант в этой ситуации был признан не совсем подходящим. В ходе дальнейшего осмотра выяснилось, что  накальный трансформатор не имеет достаточного запаса по току, поэтому вариант с 2A3 без замены накального трансформатора не реализуем.

По коммутации- при вскрытии колпака выходного трансформатора выяснился интересный технологический момент. Один из выводов вторички (общий) с внешней стороны был соединен с корпусом через винтовую ламельку. И вообще, я заметил, что собственно “общей шины” или “звезды” в этой конструкции нет. Внутри корпуса там и сям в удобных местах прикручены ламельки, на которые припаяны проводники от различных точек схемы. Вероятно, ради надежности соединения все ламельки объединены неизолированным моножильным проводом. Такая топология разводки общего мне не понравилась.

В итоге, было принято решение пока оставить выходной каскад таким, как он есть. В дальнейшем – установить стабилизаторы напряжения накала и после этого уже определиться – стоит менять выходные лампы или нет. В любом случае, драйвер и коммутацию нужно было переделывать, чем я собственно и занялся.

Убираю ненужное –

Disassembled_01Phone_Socket_Hole_01

Более внимательно разобравшись с коммутатором нагрузки мне стало очевидно, что если установить дополнительное гнездо для высокомных телефонов, то ненадежный многослойный и шумный коммутатор легко заменяется одной переключающей группой — “Включить-выключить акустику”. Под рукой оказался движковый переключатель на три положения, и на первое время я установил его. В ходе переноса и перекоммутации переключателя из усилителя было извлечено примерно 10 метров “лишнего” провода.

Драйвер я решил применить однокаскадный, с учетом режима работы выходного каскада требуемый коэффициент усиления должен быть около 40. Такое усиление легко обеспечивает пентодный усилительный каскад или, например, триодный на лампе с большим коэффициентом усиления. Исходя из имеющихся в наличии ламп и учитывая то, что отверстия под октальные панельки в корпусе уже имелись, я рассматривал два варианта – 6AS7 (6Ж4) или С3g в триодном включении. Пентодный драйвер в данном случае мне показался не совсем уместным. Не поясняя причин, скажу лишь, что если бы этот усилитель был для акустики, а не для телефонов – я бы применил пентодный драйвер.
Переделка заняла всего несколько часов. Конденсаторы в питании были перекоммутированы таким образом, что 100+100 мкФ фильтруют выходные каскады обоих каналов, а на входные каскады питание подается через индивидуальные фильтрующие RC цепочки 1.6 кОм + 100 мкФ.

C3g_and_Socket_01C3g_Installed_01Inside_After_03

Схема усилителя после переделки-

Woo_Sch_After

Напряжение на катоде С3g = 2.8 Вольт, на аноде = 180 Вольт, коэффициент усиления = 35, максимальный размах выходного напряжения ~70 Вольт RMS, коэффициент гармоник при этом составляет не более 3%. Режимы выбраны с некоторым “запасом”, поскольку я все-таки надеюсь несколько увеличить напряжение на выходе блока питания. Чуть позже я попробую установить кенотроны с меньшим внутренним сопротивлением. В этом случае, даже если после приведения накала в “норму” анодное напряжение просядет несколько меньше (при увеличении накала до номинального значения 5 Вольт ток покоя выходного каскада возрастет).

Так выглядит комплект изнутри и снаружи после переделки —

Inside_After_02Inside_After_04Amplifier_and_Power_Supply

 

Февраль-Март 2013 год                                                                     г.Владивосток

Добавлено 16.04.2013

Завершил начатое. На фото ниже – подробности окончательной модификации.

Помимо того, что было сделано раньше – установил два накальных трансформатора вместо одного. Накалы выходных ламп каждого канала теперь питаются от отдельных трансформаторов. Изменил выпрямитель накала – вместо диодного мостика установил выпрямители на быстрых диодах Шоттки + фильтр стабилизатор на микросхеме LT1084.  Конденсаторы фильтра – Elna Tonerex + Panasonic.  С выравниванием напряжения накала (теперь оно точно 5 Вольт) более- менее выровнялся тока покоя выходного каскада – теперь он 75 mA на канал. Заменил кенотроны Sophia Mesh Plate на NOS RCA 5U4 – выпрямленное напряжение значительно выросло, теперь оно = 375 Вольт.
Регулятор Alps заменил на дискретный, на меднооксидных резисторах. Уровень фона на выходе достоверно измерить не удалось (менее 0.2 mV). Даже в высокочувствительных низкоомных наушниках фона не слышно в принципе. Разрешение существенно улучшилось, местами я бы сказал — даже пугающе улучшилось. На мой взгляд, получился отличнейший усилитель. Я доволен проделанной работой.

 

Woo_Power_Supply_New_02Woo_Power_Supply_New_01Woo_Ampr_Filament_New_02Woo_Ampr_Filament_New_01

Апрель 2013 год                                                                               г.Владивосток

Усилитель Zen V. Версия 10.12 (почти окончательная)

Как и обещал, привожу окончательный (как оказалось позже, “почти” окончательный) вариант схемы усилителя Zen-V. Zen_V_Schem_10_12_001 От опубликованного ранее варианта эта схема отличается увеличенным до 24V напряжением источника питания и увеличенным до 550 mA  на канал током покоя, добавленным в схему фильтром питания и измененными номиналами нескольких резисторов и конденсаторов. Необходимость в фильтре питания выяснилась по мере накопления опыта эксплуатации усилителя с различными моделями наушников – на низкоомных высокочувствительных наушниках иногда в паузах был заметен фон (подробнее см. ниже). Простейшая схема фильтра на полевом транзисторе решила эту проблему, дополнительно обеспечивая плавное нарастание напряжения на выходе усилителя при его включении. Увеличение тока покоя одновременно улучшило стабильность работы усилителя на низкоомную нагрузку и расширило полосу в области ВЧ на “большом” сигнале до 25 кГц. На мой взгляд, этот вариант схемы оптимален и дальнейшее ее усложнение не имеет особого смысла.

Уровень Фона в усилителях Zen и Звуковоспроизведение.

Однотактные полупроводниковые усилители Zen, как и их ламповые «братья» в силу особенностей схемотехники обладают уровнем фона, нехарактерным для современных транзисторных конструкций. Если в ламповом усилителе небольшой фон воспринимается “естественно“, то в транзисторном усилителе это вызывает повышенный интерес и внимание. Причина в том, что для ощущения «абсолютной тишины» в высокочувствительных наушниках закрытого типа уровень фона усилителя должен быть ниже -70…76 dB, что достижимо только при применении специализированных стабилизаторов напряжения питания. С одной стороны, стабилизаторы уменьшают уровень фона и помех, а с другой – по моему мнению – существенно ухудшают звучание, делая его «стерильным» и лишенным живой естественности и динамики. Поэтому напряжение источника питания моих усилителей – не стабилизированное, а снижение уровня пульсаций выпрямленного напряжения осуществляется с помощью многозвенного CRC фильтра и дополнительного активного электронного фильтра на полевом транзисторе. Это решение позволяет получить уровень фона пульсаций примерно – 63…-70dB с сохранением естественного, живого и динамичного звучания усилителя. Такое значение уровня фона ниже, чем в аналогичных ламповых конструкциях, малозаметно на слух и, на мой взгляд, совершенно не мешает и не отвлекает от прослушивания музыки. Более того, уровень шума мастер-лент многих фонограмм выше этого значения.

Тем не менее, при ночном прослушивании музыки в высокочувствительных низкоомных наушниках закрытого типа фон может быть заметен. Если вы приверженец современной «цифровой тишины» в паузах между треками, то установка обычного линейного стабилизатора питания на интегральной микросхеме LT1084 позволяет получить желаемое. Но, на мой взгляд – за счет некоторого ухудшения звука.

Замечания по конструкции источника питания для усилителя Zen.

Для минимизации коммутационных помех, наводок и пульсаций в случае применения тороидальных трансформаторов в блоке питания усилителя Zen необходимо соблюдать следующее.

1. Более внимательно отнестись к расположению трансформатора в корпусе усилителя. Наводки на сигнальные цепи будут минимальны, если трансформатор расположен  перпендикулярно плоскости плат усилителя (например, закреплен на задней или боковой стенке корпуса) и (или) установлен в металлический экран. Желательно, чтобы трансформатор конструктивно был выполнен  с межобмоточным экраном.

2. Выпрямитель должен быть выполнен на диодах Шоттки (в случае применения обычных диодов желательно использовать “снабберы” (гасящие помехи RC цепи параллельно диодам). Снабберы действительно гасят помехи. Первый конденсатор фильтра блока питания должен быть небольшим. Его можно выбрать исходя из известного инженерного постулата – 1000 мкФ на 1A потребляемого тока. Далее следует установить RCRC фильтр, например такой -1.5 Ом 6800 мкФ 1 Ом 6800 мкФ  После RCRC фильтра – фильтр на полевом или биполярном транзисторе или стабилизатор напряжения. При соблюдении этих условий уровень пульсаций, наводок и помех на выходе усилителя составит ниже -65 dB.

3. Тороидальный или “обычный”, Ш-образный трансформатор питания. Тороидальные трансформаторы необходимой мощности в настоящее время более распространены. К сожалению, ввиду особенностей нашей питающей сети, без применения особых мер многие достоинства тороидальных трансформаторов оборачиваются их недостатками. В частности, более плотная, по сравнению с Ш-образным, “упаковка” материала сердечника приводит и к более “легкому” возникновению искажений формы тока при кратковременном насыщении материала сердечника. Это возможно при высоком уровне гармоник в питающей сети (“типовое” значение коэффициента гармоник “домашней” сети 220 Вольт – около 10%) или при неверно (точнее-  “оптимистично” :)) спроектированном выпрямителе и фильтре блока питания. Поэтому хорошее правило при выборе тороидального трансформатора для питания усилителя  – обеспечьте как минимум трехкратный запас по мощности. Применение для питания домашней музыкальной системы как минимум сетевых фильтров, а лучше сетевых “кондиционеров и стабилизаторов питания” – обязательно.

Традиционный трансформатор с “Ш” образным сердечником, если его обмотки выполнены верно, во многом свободен от недостатков тороидальных собратьев – из-за наличия технологического зазора такой трансформатор в насыщение входит “труднее”, гармоники сети переносит легче, уровень паразитных помех на выходе выпрямителя с таким трансформатором получается ниже. Недостатка два – габариты и узкий ассортимент.

Трансформаторы питания с ленточными сердечниками (“подковами”) на мой взгляд, удачно сочетают в себе все недостатки тороидальных и Ш-образных собратьев. 🙂

Light Voice – ЦАП и усилитель для наушников – Система выходного дня

Как-то так получилось, что от различных проектов у меня осталось пара немного побитых алюминиевых корпусов. Домашняя акустика с марта на очередной доработке, проверяется новый, улучшенный 🙂 вариант. Но музыку-то слушать надо. И вот, на майских праздниках сваял такой “прикроватно-тумбочный” комплект.
Два блока. Первый — усилитель для наушников, по схеме аналогичной “комбайну для HD-800”, лампы 6080 RCA и 6Н8С МЭЛЗ 1956 года. Второй — ЦАП (AK4393), выход – пассивный, на трансформаторах Western Electric + USB конвертор на чипе Tenor. Конвертор и ЦАП могут работать как вместе, так и раздельно. Максимальный поддерживаемый формат входных данных 24/96. Получилось весьма интересно, слушаю и радуюсь. Назвал систему — Victors Light Voice

Схема и описание усилителя.

Схема усилителя – Light_Voice_2012

Усилитель двухкаскадный, первый каскад – усилитель напряжения на половинке двойного триода 6SN7 (6Н8С). его коэффициент усиления  =14. Режим работы выбран на линейном участке ВАХ,  поэтому характеристики каскада устойчивы к колебаниям напряжения источника питания. Напряжение анод-катод выбрано = 100…102V, ток покоя = 5…5.2 mA. Режим устанавливается подбором номинала катодного резистора. В данном варианте схемы «голова управляет хвостом», то есть  режим работы выходного каскада определяется режимом работы входного.

Выходной каскад – катодный повторитель на половинке мощного двойного триода 6AS7 (6080), коэффициент передачи = 0.5, выходное сопротивление примерно 100 Ом, максимальное выходное напряжение на нагрузке 300 Ом составляет 3.5V RMS. Как и у первого каскада режим работы выбран на линейном участке  ВАХ, что обеспечивает устойчивость характеристик. Напряжение анод катод выбрано = 90V, ток покоя = 70 mA. Мощность, рассеиваемая на половинке 6AS7 в этом случае составляет 6.3Вт, что значительно меньше предельно допустимой (12 Вт)

Усилитель не критичен к напряжению источника питания и сохраняет работоспособность в диапазоне питающих напряжений 200…250V.

Несколько слов о выборе номинала резистора R8. В этой схеме он может быть в диапазоне 1.7…2.5 кОм, от его номинала зависит уровень искажений и максимальный размах выходного напряжения. Для сопротивления нагрузки 300 Ом оптимальное значение R8 = 2.2 кОм. В качестве R8 желательно применить резистор в металлическом корпусе (Vishay, Mills) с допустимой мощностью рассеяния не менее 25 Вт. В процессе работы усилителя на этом резисторе выделяется примерно 12 Вт тепла, поэтому следует позаботиться о свободном монтаже и о циркуляции воздуха в корпусе усилителя.

Выходные конденсаторы С5, С6 следует применить максимально возможного-доступного качества. Хороший выбор – Hovland + Panasonic. Изменяя номинал С5, в некоторой степени можно регулировать тональный баланс звучания усилителя. Резисторы R3, R5 обеспечивают устойчивую работу усилителя на ВЧ на пиках сигнала.

Наладка усилителя сводится к установке на аноде 6SN7 напряжения  100…105V. этого добиваются подбором резистора R7, обычно его номинал находится в пределах 410…500 Ом.   При установке заданного режима работы первого каскада режим работы выходного каскада устанавливается автоматически.

Блок питания усилителя  каких либо особенностей не имеет. Выпрямитель – двухполупериодный со средней точкой, пульсации выпрямленного напряжения фильтруется электронным фильтром на MOSFET транзисторе. Трансформатор TR1 должен обеспечить напряжение на вторичной обмотке 180+180V RMS при токе нагрузки не менее 200 mA, я применил Hammond 363CX. Накальный трансформатор должен быть рассчитан на ток нагрузки не менее 4A, я применил китайский накальный трансформатор, намотанный на сердечнике R-Core. Хороший вариант накального трансформатора для этой схемы-  Нammond 185C12  Диоды – обычные, серии FR, на обратное напряжение не менее 600V. Схема фильтра обеспечивает  плавное нарастание анодного напряжения при включении усилителя. Подбором резистора R12 в небольших пределах можно регулировать напряжение на выходе фильтра. Транзистор VT1   нужно установить на радиатор, как вариант – можно закрепить его через изолирующую прокладку на металлическое шасси усилителя. Конденсатор С9 должен быть очень качественным, с минимальным током утечки.

Накал ламп питается напряжением переменного тока, для снижения уровня проникновения помех по цепям накала потенциал накальных обмоток  с помощью делителя напряжения R16 R17 поднят относительно общего примерно на + 20 Вольт.

Усилитель очень благодарно «отзывается» на качество примененных компонентов и, на мой взгляд, является одним из лучших усилителей для таких наушников, как, например Sennheiser HD800

Май 2012 год                                                                                                 г.Владивосток

Усилитель оказался популярным и сравнительно легким для повторения 🙂   На фото ниже – вариант Сергея, известного как karnaser на форуме doctorhead. Это его первая конструкция на лампах. Трансформаторы и шасси – Hammond.

Июль 2013 год

И еще один вариант – от  Александра, это его вторая конструкция на лампах. По моему, получилось весьма неплохо.

Ноябрь 2013 год

Усилитель ZEN V для наушников класса HD800 и LCD3

Примерно с год тому назад на форумах сайтов audioportal.su и doctorhead.ru довольно интенсивно обсуждался вопрос качественного и сравнительно компактного универсального усилителя для наушников. Собственно, необходимость в таком усилителе возникала с выходом двух уникальных по своим техническим характеристикам моделей наушников – динамических Sennheiser HD-800 и изодинамических LCD-3

 

Основная проблема заключалась в том, что фактически ни один из широко распространенных серийно выпускаемых транзисторных усилителей не обеспечивал этим наушниками звучания, хотя бы сравнимого по качеству со звучанием специализированного лампового усилителя (см https://easytubeamp.ru/?p=449).  Известный на doctorhead форумчанин SharapOFF, проводя различные коммутационные эксперименты 🙂 обнаружил, что один из предусилителей Aleph (от Pass Labs) удивительно ясно и музыкально играет с выхода на наушники, хотя и уровень выходного сигнала был недостаточен. Так и возникла идея о создании транзисторного усилителя по топологии Zen, специально ориентированного для работы со “сложными”  наушниками.  За основу была взята схема Zen V4 (Penultimate Zen), режимы пересчитаны исходя из требований к нагрузке. В ходе отладки было собрано три версии усилителя, схема и описание третьей версии представлены ниже.

1. Схема усилителя.

На рисунках представлены блок схема и схема блока коммутации усилителя, принципиальные схемы буферного усилителя мониторного выхода, блока питания и усилителя мощности.  Для наглядности на схемах показан только один канал.

Усилитель имеет три входа – один с разъемом RCA-типа (Вход 1) и два с разъемами XLR-типа (Вход 2 и Вход 3). Вход 2 преобразует входной балансный сигнал в SE при помощи трансформаторного преобразователя. Преобразователь выполнен на специализированном трансформаторе Jensen JT-11P. RC цепочка R3C3 необходима для шунтирования вторичной обмотки, что линеаризует АЧХ трансформатора в области ВЧ. Цепочка R1C1  и переключатель S1 служат для коммутации экрана входного кабеля на корпус усилителя по постоянному или по переменному току (это позволяет «разомкнуть» возможную земляную «петлю»), его положение выбирается по минимуму слышимого фона и наводок.

Вход 3  коммутирует входной балансный сигнал в SE стандартным образом – в качестве сигнального применяется пин «+», в качестве общего – пин «-». Этот вход так же снабжен переключателем-коммутатором экрана входного кабеля (S2).

Выбор входа осуществляется переключателем S3, в качестве которого применен прецизионный коммутатор DACT. Положения 1,2,3 соответствуют номеру выбранного входа, положение 4 размыкает цепь сигнала и замыкает вход усилителя на общий (режим “MUTE”). С выхода коммутатора входов сигнал поступает на буферный усилитель мониторного выхода и на регуляторы баланса и громкости.

Буферный усилитель выполнен на cдвоенном скоростном операционном усилителе AD827, включенным по схеме повторителя с однополярным питанием.  Буферный усилитель позволяет снизить взаимовлияние устройств, подключенных к мониторному выходу и входам и развязывает их по постоянному току.

Регуляторы баланса и громкости выполнены на прецизионных ступенчатых резистивных аттеньюаторах DACT. С регуляторов сигнал поступает на вход усилителя мощности.

Усилитель мощности выполнен по однотактной схеме, на полевом транзисторе Q2, включенным с общим истоком. В качестве нагрузки применен «следящий» источник тока на транзисторах Q1, Q3. Каcкад работает в классе A, резистором R13 задается начальный ток покоя каскада (350…400 mA). Элементы следящей связи R6,R8,C5 обеспечивают подстройку тока каскада в зависимости от амплитуды сигнала на выходе. Введение «следящей связи» позволило существенно снизить выходное сопротивление каскада и увеличить максимальный размах напряжения на нагрузке. Резистором R2 устанавливают рабочую точку каскада по напряжению таким образом, чтобы обеспечивалось симметричное ограничение выходного сигнала максимальной амплитуды.

Выбранные режимы обеспечивают размах выходного напряжения усилителя 5.5V RMS на нагрузке 30 Ом. При этом спектр искажений усилителя при изменении амплитуды сигнала спадает и нарастает равномерно и ограничивается 4-й гармоникой, аналогично спектру искажений высококачественных однотактных усилителей на лампах. В цепях питания и в качестве разделительного С2 применены конденсаторы Panasonic FC. Конденсатор С2 дополнительно зашунтирован высококачественным пленочным конденсатором С3 марки Jentzen.

Блок питания усилителя особенностей не имеет. Левый и правый каналы усилителя мощности питаются от отдельных выпрямителей. Буферный усилитель питается от выпрямителя правого канала. Светодиод индикации включения усилителя питается от выпрямителя левого канала. В качестве выпрямителей применены мощные быстрые диоды Шоттки 1N5819, в качестве фильтрующих конденсаторов – Panasonic FM.   Средний вывод сетевой розетки соединен с корпусом усилителя.

Из-за сравнительно высокого тока покоя усилитель выходит на рабочий температурный режим в примерно через 30-40 минут после включения, после чего звучание усилителя стабилизируется.

2. Управление и коммутация.

На передней панели усилителя слева направо размещены:

  • Два разъема для подключения телефонов, разъемы идентичны и могут быть использованы как для совместного, так и для раздельного подключения как высокоомных (>150 Ом), так и низкоомных (20…150 Ом) телефонов.
  • Переключатель-селектор входов на 4 положения. Положение «1» соответствует первому входу (RCA), положения «2» и «3» соответсвуют XLR входам, положение «4» отключет вход усилителя мощности от источника сигнала и замыкает его на общий (режим «MUTE»).
  • Регулятор баланса,
  • Регулятор громкости.

На задней панели усилителя расположены –

  • Вход № 1 (RCA) – правый канал (красный) – нижний, левый (белый) – верхний.
  • Bход № 2 (XLR) – правый канал нижний, левый – верхний. Вход №2 снабжен трансформаторным преобразователем балансного сигнала в небалансный. Переключатель, расположенный рядом с входом, коммутирует экран соединительного кабеля на корпус усилителя. Положение переключателя выбирается по минимуму слышимых наводок.
  • Вход № 3 (XLR) – правый канал нижний, левый – верхний. Вход № 3 предназначен для подключения современных балансных источников, которые допускают использования сигнала «-» в качестве общего. Этот вход так же снабжен переключателем-коммутатором экрана соединительного кабеля.
  • Выход (RCA) (расположен по центру задней панели) –  правый канал (красный) – нижний, левый (белый) – верхний. Буферизированный контрольный выход, уровень сигнала на нем равен входному. Регуляторы громкости и баланса на контрольный выход не действуют.
  • Разъем подключения сети (220 Вольт) и предохранитель. Центральный вывод сетевого разъема подключен к корпусу усилителя.

3. Основные технические характеристики 

  • Номинальный уровень входного сигнала = 1V Rms
  • Входное сопротивление, не менее = 50 кОм
  • Максимальный уровень выходного сигнала на нагрузке 300 Ом (@1000Hz) = 6.3V Rms
  • Максимальный уровень выходного сигнала на нагрузке 30 Ом (@1000Hz) = 5.5V Rms (Примечание 1 – под «максимальным» понимается уровень, при котором на экране осциллографа ограничение синусоидального сигнала становится едва заметным)
  • Выходное сопротивление (максимальное значение) @ 1000Hz = 0.5 Ом
  • Неравномерность АЧХ при уровне выходного сигнала -10dB от максимального в полосе частот 10Гц…20кГц = не более +- 1 dB.
  • Общий коэффициент гармоник при выходной мощности – 10dB от номинальной = менее 0.5%,  2-я и 4-я гармоники. (Примечание 2 – Усилитель имеет очень ограниченный спектр искажений, преимущественно четные гармоники. При изменении амплитуды выходного сигнала спектр гармоник остается плавноспадающим и плавнонарастающим, с мягким клиппингом, характерным для усилителей, работающих в классе А без ООС).

4. Благодарности

Выражаю огромную благодарность Маеву Сергею Владимировичу (г. Санкт-Петербург) за возможность разработать и изготовить для него эту конструкцию, а так же за продуктивное обсуждение технических деталей. Выражаю надежду, что этот усилитель будет радовать его своим звучанием на протяжении многих лет.

Так же выражаю благодарность талантливейшему инженеру и замечательному, открытому к общению и доброжелательному человеку Nelson Pass, который уже много лет вдохновляет и направляет тысячи аудиоэнтузиастов и разработчиков аппаратуры.

И еще один вариант, собранный недавно для Столярова Максима Анатольевича, г. Горловка, Украина. Большое спасибо за заказ.

Сентябрь 2011- Июнь 2012 года                                                г. Владивосток

PS По многочисленным просьбам 🙂 привожу самый последний вариант однокаскадного усилителя Zen -V  Zen_V_final_11_12.

Комментарии  — Ток покоя выбирается при сборке усилителя и не подстраивается, на практике в этом нет необходимости. Его настройку производят  выбором номинала R6, ток покоя считается как 0.7/R6, где 0.7V – это напряжение “открывания” VT4.  R6 можно выбрать в пределах 1.3…1.5 Ом, ток покоя при этом будет  460…540 mA. R6 удобно составить из двух параллельно соединенных резисторов номиналом 2.7…3Ом мощностью 2 Вт.  Резистором R2 подстраивают “симметрию” ограничения сигнала на выходе усилителя. В зависимости от напряжения источника питания возможно дополнительно потребуется подстройка резистора R3.

Для этого усилителя я рекомендую строить выпрямитель блока питания по схеме со средней точкой вторичной обмотки (на двух диодах), трансформатор должен иметь две идентичное обмотки (или одну обмотку с отводом от середины), например  20+20, 22+22, 24+24 Вольт при максимальном токе нагрузке не менее 3…5А.  В последней версии усилителя я применяю трансформаторы мощностью 220VA. Фильтр CRCRС, первая емкость = 2200 мкФ, резистор 0.5 Ом 5W, вторая емкость 10000 мкФ, резистор 0.5 Ом 5W, третья емкость 47000 мкФ. Минусовые обкладки конденсаторов объединены медной шиной круглого сечения диаметром 2мм. Шина соединена с металлическим корпусом усилителя через RС цепь R15C10.  Для высококачественных усилителей для наушников такая организация источника питания – необходимость.

Каналы усилителя собраны на отдельных платах. Питание и общий подводятся на каждый канал отдельными проводами. Общие с выходов каналов объединяются на разъеме для наушников.
Транзисторы VT1,VT2,VT3 каждого из каналов установлены на боковых стенках металлического корпуса усилителя, размер которых 80x330x5 мм. При работе стенки корпуса нагреваются примерно до +45 градусов, это нормальная  температура. Транзисторы следует устанавливать через слюдяные или керамические прокладки, обязательно с применением термопасты. Силиконовые прокладки использовать крайне нежелательно.

Ноябрь 2012                                                                                      г.Владивосток

Двухтактный ламповый усилитель для наушников STAX

Предварительно этот усилитель был “заявлен” на форуме doctorhead.ru (в теме “Схемотехника усилителей для электростатических наушников”). Здесь – полное описание конструкции.

1. Схема усилителя.

Принципиальная схема усилителя и его блока питания приведена в файлах. STAX_Amp_PP_June_2012_003  STAX_Amp_PP_June_2012_004

Каждый из двух каналов собран по двухтактной схеме, на триодах со средним коэффициентом усиления (драйверный и фазоинверторный каскады), и на пентодах средней мощности в триодном включении (выходной каскад), без общей ООС.

Для наглядности на схеме показан только один канал.

Первый (входной) каскад – усилитель с общим катодом с резистивной анодной нагрузкой. В качестве ламп первого и второго каскадов применен двойной триод 6BZ7 (6BQ7), особенностью которого является хорошая линейность при сравнительно небольшом напряжении на аноде. Режим работы первого каскада – ток покоя каждого плеча 3.7…4 mA, напряжение на аноде + 120…+125V.  Напряжение смещения = -2.0…-2.1V.  Второй (фазоинверторный) каскад собран по схеме с расщепленной нагрузкой. Ток покоя второго каскада  8…9 mA, напряжения на аноде и катоде лампы второго каскада равны +240…+245V и +124…+127V соответственно. Связь между первым и вторым каскадами – гальваническая, режим работы устанавливается резистором R7. Резистором R9 производится балансировка фазоинверторного каскада. Общий коэффициент усиления первого и второго каскадов = ~30. Для полной «раскачки» выходных ламп необходимо напряжение на их сетках примерно 10…12V rms, таким образом чувствительность усилителя составляет примерно 0.4V rms.

В первом и втором каскадах допустимо применение ламп 6BZ7, 6BQ7, 6DJ8, 6922, E88CC, ECC88, 6Н23П-ЕВ и даже 6Н1П-ЕВ (с некоторым снижением коэффициента усиления).

Третий (выходной) каскад усилителя собран по двухтактной схеме, с раздельным автоматическим смещением выходных ламп. Связь между фазоинверторным и выходным каскадами – емкостная. Смещение задается резисторами R18, R19 в катодах выходных ламп. По переменному току эти резисторы зашунтированы конденсаторами С9, С10, С11, С12. Конденсаторы С11 и С12 включены по технологии “Ultrapath”. Ток покоя составляет 29…32 mA для каждой лампы. Нагрузкой каскада служит выходной трансформатор, вторичная обмотка которого симметричная, со средней точкой. В качестве выходных трансформаторов применены изделия от компании Lundahl, модели LL1660S/PP, скоммутированные по схеме PP/PP c  коэффициентом передачи  (2.25+2.25):(2+2). Режим работы выходных ламп выбран таким образом, чтобы на нагрузке обеспечивался максимально возможный размах выходного напряжения при минимуме нечетных гармоник. Так как четные гармоники в двухтактном каскаде в значительной степени компенсируются, то при подборе выходных ламп в близкие по параметрам пары это позволяет получить очень низкий общий уровень гармонических искажений усилителя и обойтись без введения петли ООС.

В качестве ламп выходного каскада используются пентоды средней мощности 6GK6,  в триодном включении.  С некоторым ухудшением характеристик и с перепайкой цоколевки можно применить EL84, 6П14П-ЕВ.

Блок питания усилителя особенностей не имеет.

В качестве трансформатора питания и накала использован подходящий по парметрам весьма качественной трансформатор компании Hаmmond.

Накал питается напряжением переменного тока, для уменьшения уровня помех и наводок на накальные цепи, напряжение накала «поднято» над общим примерно на +80V при помощи делителя R27R28C17.

Анодное напряжение, необходимое для работы схемы, снимается со вторичной обмотки трансформатора питания и выпрямляется кенотроном. Выпрямленное напряжение (+415 V) фильтруется с помощью стабилизатора- электронного фильтра на транзисторе VT1, он же обеспечивает плавное нарастание анодного напряжения при включении усилителя. Напряжение на выходе фильтра = +385 V.  Напряжение BIAS (+580V), необходимое для работы телефонов STAX, формируется с помощью выпрямителя на полупроводниковых диодах VD3,VD4, простейшим стабилизатором на элементах R30ZD,  и фильтром на элементах С21R31C22.

С предварительно подобранными лампами 6GK6 в выходном каскаде усилитель обеспечивает следующие характеристики –

  • Входное сопротивление = 24 кОм;
  • Выходное сопротивление, не более 2.4 кОм;
  • Максимальное выходное напряжение (на каждом из балансных выходов) = 185V RMS (518V Peak-to-Peak);
  • Номинальное входное напряжение = 400mV RMS;
  • Полоса воспроизводимых частот, при неравномерности +-1 dB и уровне выходного напряжения 100V RMS, на эквиваленте нагрузки сопротивлением 100 кОм = 20Гц…22кГц;
  • Общий коэффициент искажений на выходе усилителя, при уровне выходного напряжения 100VRMS = < 0.5% (Определяется точностью подбора по характеристикам ламп выходного каскада, при установке неподобранной пары ламп одного изготовителя и одной даты выпуска = < 2%);
  • Уровень шумов и помех на выходе усилителя, при минимальном положении регулятора громкости, измеренный на эквиваленте нагрузки сопротивлением 100 кОм = < -65dB;
  • Время выхода на «рабочий» режим после включения, <= 30 мин.

2. Благодарности

Выражаю огромную благодарность Боброву Евгению Владимировичу  (г.Магнитогорск) за возможность разработать и изготовить для него эту конструкцию, а так же за продуктивное обсуждение технических деталей. Выражаю надежду, что этот усилитель будет радовать его своим звучанием на протяжении многих лет.

Так же хотел бы упомянуть о талантливейшем Британском инженере D.T.N. Williamson,  много лет назад вдохновившем и направившем схемой своего двухтактного усилителя десятки тысяч аудиоэнтузиастов и разработчиков аппаратуры во всем мире.

Май-Июнь 2012 года                                                                г. Владивосток